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Financial Toolbox Product Description

Analyze financial data and develop financial models

Financial Toolbox provides functions for mathematical modeling and statistical analysis
of financial data. You can optimize portfolios of financial instruments, optionally taking
into account turnover and transaction costs. The toolbox enables you to estimate risk,
analyze interest rate levels, price equity and interest rate derivatives, and measure
investment performance. Time series analysis functions and an app let you perform
transformations or regressions with missing data and convert between different trading
calendars and day-count conventions.

Key Features

* Mean-variance and CVaR-based object-oriented portfolio optimization

+ Cash flow analysis, risk analysis, financial time-series modeling, date math, and
calendar math

+ Basic SIA-compliant fixed-income security analysis

+ Basic Black-Scholes, Black, and binomial option pricing
* Regression and estimation with missing data

+ Basic GARCH estimation, simulation, and forecasting

* Technical indicators and financial charts
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Expected Users

In general, this guide assumes experience working with financial derivatives and some
familiarity with the underlying models.

In designing Financial Toolbox documentation, we assume that your title is like one of
these:

+ Analyst, quantitative analyst

* Risk manager

* Portfolio manager

+ Asset allocator

* Financial engineer

* Trader

+ Student, professor, or other academic

We also assume that your background, education, training, and responsibilities match
some aspects of this profile:

* Finance, economics, perhaps accounting

* Engineering, mathematics, physics, other quantitative sciences

*  Focus on quantitative approaches to financial problems
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Analyze Sets of Numbers Using Matrix Functions

In this section...

“Introduction” on page 1-4
“Key Definitions” on page 1-4
“Referencing Matrix Elements” on page 1-5

“Transposing Matrices” on page 1-6

Introduction

Many financial analysis procedures involve sets of numbers; for example, a portfolio

of securities at various prices and yields. Matrices, matrix functions, and matrix

algebra are the most efficient ways to analyze sets of numbers and their relationships.
Spreadsheets focus on individual cells and the relationships between cells. While you can
think of a set of spreadsheet cells (a range of rows and columns) as a matrix, a matrix-
oriented tool like MATLAB® software manipulates sets of numbers more quickly, easily,
and naturally. For more information, see “Matrix Algebra Refresher” on page 1-7.

Key Definitions
Matrix

A rectangular array of numeric or algebraic quantities subject to mathematical
operations; the regular formation of elements into rows and columns. Described as a “m-
by-n” matrix, with m the number of rows and n the number of columns. The description
is always “row-by-column.” For example, here is a 2-by-3 matrix of two bonds (the rows)
with different par values, coupon rates, and coupon payment frequencies per year (the
columns) entered using MATLAB notation:

Bonds = [1000 0.06 2
500 0.055 4]

Vector

A matrix with only one row or column. Described as a “1-by-n” or “m-by-1” matrix. The
description is always “row-by-column.” For example, here is a 1-by-4 vector of cash flows
in MATLAB notation:

Cash = [1500 4470 5280 -1299]
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Scalar

A 1-by-1 matrix; that is, a single number.

Referencing Matrix Elements

To reference specific matrix elements, use (row, column) notation. For example:

Bonds(1,2)
ans =
0.06
Cash(3)
ans =

5280.00

You can enlarge matrices using small matrices or vectors as elements. For example,

AddBond = [1000 0.065 2];
Bonds = [Bonds; AddBond]

adds another row to the matrix and creates

Bonds =

1000 0.06 2
500 0.055 4
1000 0.065 2

Likewise,

Prices = [987.50
475.00
995.00]

Bonds = [Prices, Bonds]

adds another column and creates

Bonds =
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987.50 1000 0.06 2
475.00 500 0.055 4
995.00 1000 0.065 2

Finally, the colon (:) is important in generating and referencing matrix elements. For
example, to reference the par value, coupon rate, and coupon frequency of the second
bond:

Bondltems = Bonds(2, 2:4)

Bondltems =

500.00 0.055 4

Transposing Matrices

Sometimes matrices are in the wrong configuration for an operation. In MATLAB, the
apostrophe or prime character () transposes a matrix: columns become rows, rows
become columns. For example,

Cash = [1500 4470 5280 -1299]*

produces

Cash =

1500
4470
5280
-1299

More About

. “Matrix Algebra Refresher” on page 1-7
. “Using Input and Output Arguments with Functions” on page 1-17
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Matrix Algebra Refresher

In this section...

“Introduction” on page 1-7

“Adding and Subtracting Matrices” on page 1-7
“Multiplying Matrices” on page 1-8

“Dividing Matrices” on page 1-12

“Solving Simultaneous Linear Equations” on page 1-13

“Operating Element by Element” on page 1-16

Introduction

The explanations in the sections that follow should help refresh your skills for using
matrix algebra and using MATLAB functions.

In addition, William Sharpe's Macro-Investment Analysis also provides an excellent
explanation of matrix algebra operations using MATLAB. It is available on the Web at:

http://www.stanford.edu/~wfsharpe/mia/mia.htm

Tip When you are setting up a problem, it helps to “talk through” the units and
dimensions associated with each input and output matrix. In the example under
“Multiplying Matrices” on page 1-8, one input matrix has “five days' closing prices

for three stocks,” the other input matrix has “shares of three stocks in two portfolios,”
and the output matrix therefore has “five days' closing values for two portfolios.” It also
helps to name variables using descriptive terms.

Adding and Subtracting Matrices

Matrix addition and subtraction operate element-by-element. The two input matrices
must have the same dimensions. The result is a new matrix of the same dimensions
where each element is the sum or difference of each corresponding input element. For
example, consider combining portfolios of different quantities of the same stocks (“shares
of stocks A, B, and C [the rows] in portfolios P and Q [the columns] plus shares of A, B,
and C in portfolios R and S”).

Portfolios_PQ = [100 200

1-7
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500 400
300 150];
Portfolios_RS = [175 125
200 200
100 500];

NewPortfolios = Portfolios_PQ + Portfolios_RS

NewPortfolios =

275 325
700 600
400 650

Adding or subtracting a scalar and a matrix is allowed and also operates element-by-
element.

SmallerPortf = NewPortfolios-10

SmallerPortf =

265.00 315.00
690.00 590.00
390.00 640.00

Multiplying Matrices

Matrix multiplication does not operate element-by-element. It operates according to the
rules of linear algebra. In multiplying matrices, it helps to remember this key rule: the
inner dimensions must be the same. That is, if the first matrix is m-by-3, the second
must be 3-by-n. The resulting matrix is m-by-n. It also helps to “talk through” the units
of each matrix, as mentioned in “Analyze Sets of Numbers Using Matrix Functions” on
page 1-4.

Matrix multiplication also is not commutative; that is, it is not independent of order.
A*B does not equal B*A. The dimension rule illustrates this property. If A is 1-by-3
matrix and B is 3-by-1 matrix, A*B yields a scalar (1-by-1) matrix but B*A yields a 3-
by-3 matrix.

Multiplying Vectors

Vector multiplication follows the same rules and helps illustrate the principles. For
example, a stock portfolio has three different stocks and their closing prices today are:
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ClosePrices = [42.5 15 78.875]

The portfolio contains these numbers of shares of each stock.

NumShares = [100
500
300]

To find the value of the portfolio, multiply the vectors
PortfValue = ClosePrices * NumShares
which yields:
Portfvalue =
3.5413e+004

The vectors are 1-by-3 and 3-by-1; the resulting vector is 1-by-1, a scalar. Multiplying
these vectors thus means multiplying each closing price by its respective number of
shares and summing the result.

To illustrate order dependence, switch the order of the vectors

Values = NumShares * ClosePrices

Values
1.0e+004 *
0.4250 0.1500 0.7887
2.1250 0.7500 3.9438
1.2750 0.4500 2.3663

which shows the closing values of 100, 500, and 300 shares of each stock, not the portfolio
value, and meaningless for this example.

Computing Dot Products of Vectors

In matrix algebra, if X and Y are vectors of the same length

Y= [y11y2,,yn]
X =[x1,%9,...,%,]
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then the dot product
XY =x1y) +xoyg +...+ X, Y,

1s the scalar product of the two vectors. It is an exception to the commutative rule. To
compute the dot product in MATLAB, use sum(X .* Y) or sum(Y .* X). Be sure that
the two vectors have the same dimensions. To illustrate, use the previous vectors.

Value = sum(NumShares .* ClosePrices")

Value =
3.5413e+004
Value = sum(ClosePrices .* NumShares®)

Value =

3.5413e+004
As expected, the value in these cases matches the PortfValue computed previously.
Multiplying Vectors and Matrices

Multiplying vectors and matrices follows the matrix multiplication rules and process. For
example, a portfolio matrix contains closing prices for a week. A second matrix (vector)
contains the stock quantities in the portfolio.

WeekClosePr = [42.5 15 78.875
42.125 15.5 78.75
42.125 15.125 79
42.625 15.25 78.875
43 15.25 78.625];
PortQuan = [100
500
300];

To see the closing portfolio value for each day, simply multiply

WeekPortValue = WeekClosePr * PortQuan

WeekPortValue

1.0e+004 *
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-5412
-5587
.5475
-5550
.5513

wWwwww

The prices matrix is 5-by-3, the quantity matrix (vector) is 3-by-1, so the resulting matrix
(vector) 1s 5-by-1.

Multiplying Two Matrices

Matrix multiplication also follows the rules of matrix algebra. In matrix algebra notation,
if A is an m-by-n matrix and B is an n-by-p matrix

a1l 42 o Qp by - by o by,
. : : b . b ) b
_ |21 2J 2p
A - all al2 o ain 4 B - : : :
b b . b
nl n n;
1%m1 %m2 " %mn J P

then C = A*B is an m-by-p matrix; and the element c; in the ith row and jth column of C
is

Cj = ailblj + ai2b12 +... +ainbnj.
To illustrate, assume that there are two portfolios of the same three stocks above but

with different quantities.

Portfolios = [100 200
500 400
300 150];

Multiplying the 5-by-3 week's closing prices matrix by the 3-by-2 portfolios matrix yields
a 5-by-2 matrix showing each day's closing value for both portfolios.

PortfolioValues = WeekClosePr * Portfolios

PortfolioValues

1.0e+004 *

1-11



1 Getting Started

1-12

3.5412 2.6331
3.5587 2.6437
3.5475 2.6325
3.5550 2.6456
3.5513 2.6494

Monday's values result from multiplying each Monday closing price by its respective
number of shares and summing the result for the first portfolio, then doing the same for
the second portfolio. Tuesday's values result from multiplying each Tuesday closing price
by its respective number of shares and summing the result for the first portfolio, then
doing the same for the second portfolio. And so on, through the rest of the week. With one
simple command, MATLAB quickly performs many calculations.

Multiplying a Matrix by a Scalar

Multiplying a matrix by a scalar is an exception to the dimension and commutative rules.
It just operates element-by-element.

Portfolios = [100 200
500 400
300 150];

DoublePort = Portfolios * 2

DoublePort =
200 400
1000 800
600 300

Dividing Matrices

Matrix division is useful primarily for solving equations, and especially for solving
simultaneous linear equations (see “Solving Simultaneous Linear Equations” on page
1-13). For example, you want to solve for Xin A*X = B.

In ordinary algebra, you would divide both sides of the equation by A, and X would equal
B/A. However, since matrix algebra is not commutative (A*X # X*A), different processes
apply. In formal matrix algebra, the solution involves matrix inversion. MATLAB,
however, simplifies the process by providing two matrix division symbols, left and right
(\ and /). In general,

X = A\B solves for X in A*X = B and
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X = B/A solves for X in X*A = B.

In general, matrix A must be a nonsingular square matrix; that is, it must be invertible
and it must have the same number of rows and columns. (Generally, a matrix is
invertible if the matrix times its inverse equals the identity matrix. To understand

the theory and proofs, consult a textbook on linear algebra such as Elementary Linear
Algebra by Hill listed in Appendix A.) MATLAB gives a warning message if the matrix is
singular or nearly so.

Solving Simultaneous Linear Equations

Matrix division is especially useful in solving simultaneous linear equations. Consider
this problem: Given two portfolios of mortgage-based instruments, each with certain
yields depending on the prime rate, how do you weight the portfolios to achieve certain
annual cash flows? The answer involves solving two linear equations.

A linear equation is any equation of the form
mx+agy =b,

where a,, as, and b are constants (with a; and as not both 0), and x and y are variables.
(It is a linear equation because it describes a line in the xy-plane. For example, the
equation 2x + y = 8 describes a line such that if x = 2, then y = 4.)

A system of linear equations is a set of linear equations that you usually want to solve
at the same time; that is, simultaneously. A basic principle for exact answers in solving
simultaneous linear equations requires that there be as many equations as there are
unknowns. To get exact answers for x and y, there must be two equations. For example,
to solve for x and y in the system of linear equations

2x+y=13
x—3y=-18,

there must be two equations, which there are. Matrix algebra represents this system as
an equation involving three matrices: A for the left-side constants, X for the variables,
and B for the right-side constants

i 2} wf) o2)

1-13
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where A*X = B.

Solving the system simultaneously means solving for X. Using MATLAB,

A=1[2 1
1 -31;

B = [13
-18];

X=A\B

solves for Xin A * X = B.
X = [3 7]

So x = 3 and y = 7 in this example. In general, you can use matrix algebra to solve any
system of linear equations such as

a91X1 +A99Xg +...+ a9y X, = b2

=b

amlxl +am2x2 +...+ amnx n

n

by representing them as matrices

a;i; Mo A1n X1 by
a a a X b
21 22 2 2 2
A = :n 5 X = : 5 B =
Am1 Am2 Amn Xn bm

and solving for Xin A*X = B.

To illustrate, consider this situation. There are two portfolios of mortgage-based
instruments, M1 and M2. They have current annual cash payments of $100 and $70

per unit, respectively, based on today's prime rate. If the prime rate moves down one
percentage point, their payments would be $80 and $40. An investor holds 10 units of M1
and 20 units of M2. The investor's receipts equal cash payments times units, or R=C *
U, for each prime-rate scenario. As word equations:

1-14
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M1 M2

Prime flat: $100 * 10 units + $70 * 20 units = $2400
receipts

Prime down: $80 * 10 units + $40 * 20 units = $1600
receipts

As MATLAB matrices:

Cash = [100 70

80 40];
Units = [10
20];

Receipts = Cash * Units

Receipts =

2400
1600

Now the investor asks this question: Given these two portfolios and their characteristics,
how many units of each should I hold to receive $7000 if the prime rate stays flat and
$5000 if the prime drops one percentage point? Find the answer by solving two linear
equations.

M1 M2
Prime flat: $100 * x units + $70 * y units = $7000
receipts
Prime down: $80 * x units + $40 * y units = $5000
receipts

In other words, solve for U (units) in the equation R (receipts) = C (cash) * U (units).
Using MATLAB left division

Cash = [100 70
80 40];

Receipts = [7000
5000];

1-15
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Units = Cash \ Receipts
Units =
43.7500
37.5000

The investor should hold 43.75 units of portfolio M1 and 37.5 units of portfolio M2 to
achieve the annual receipts desired.

Operating Element by Element

Finally, element-by-element arithmetic operations are called array operations. To
indicate a MATLAB array operation, precede the operator with a period (.). Addition
and subtraction, and matrix multiplication and division by a scalar, are already array
operations so no period is necessary. When using array operations on two matrices,
the dimensions of the matrices must be the same. For example, given vectors of stock
dividends and closing prices

Dividends = [1.90 0.40 1.56 4.50];
Prices = [25.625 17.75 26.125 60.50];

Yields = Dividends ./ Prices

Yields =

0.0741 0.0225 0.0597 0.0744

More About

. “Analyze Sets of Numbers Using Matrix Functions” on page 1-4

. “Using Input and Output Arguments with Functions” on page 1-17
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In this section...

“Input Arguments” on page 1-17
“Output Arguments” on page 1-19

“Interest Rate Arguments” on page 1-20

Input Arguments

Matrix Input

MATLAB software was designed to be a large-scale array (vector or matrix) processor.
In addition to its linear algebra applications, the general array-based processing facility
can perform repeated operations on collections of data. When MATLAB code is written
to operate simultaneously on collections of data stored in arrays, the code is said to be
vectorized. Vectorized code is not only clean and concise, but is also efficiently processed
by MATLAB.

Because MATLAB can process vectors and matrices easily, most Financial Toolbox
functions allow vector or matrix input arguments, rather than single (scalar) values.
For example, the 1rr function computes the internal rate of return of a cash flow
stream. It accepts a vector of cash flows and returns a scalar-valued internal rate of
return. However, it also accepts a matrix of cash flow streams, a column in the matrix
representing a different cash flow stream. In this case, irr returns a vector of internal
rates of return, each entry in the vector corresponding to a column of the input matrix.
Many other toolbox functions work similarly.

As an example, suppose that you make an initial investment of $100, from which you
then receive by a series of annual cash receipts of $10, $20, $30, $40, and $50. This cash
flow stream may be stored in a vector

CashFlows = [-100 10 20 30 40 50]°"
which MATLAB displays as
CashFlows =

-100

10
20

1-17
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30
40
50

The irr function can compute the internal rate of return of this stream.
Rate = irr(CashFlows)
The internal rate of return of this investment is
Rate =
0.1201

or 12.01%.

In this case, a single cash flow stream (written as an input vector) produces a scalar
output — the internal rate of return of the investment.

Extending this example, if you process a matrix of identical cash flow streams

Rate = irr([CashFlows CashFlows CashFlows])

you should expect to see identical internal rates of return for each of the three
investments.

Rate =
0.1201 0.1201 0.1201

This simple example illustrates the power of vectorized programming. The example
shows how to collect data into a matrix and then use a toolbox function to compute
answers for the entire collection. This feature can be useful in portfolio management, for
example, where you might want to organize multiple assets into a single collection. Place
data for each asset in a different column or row of a matrix, then pass the matrix to a
Financial Toolbox function. MATLAB performs the same computation on all of the assets
at once.

Matrices of String Input
Enter MATLAB strings surrounded by single quotes ("string”).

Strings are stored as character arrays, one ASCII character per element. Thus, the date
string
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DateString = "9/16/2001"

is actually a 1-by-9 vector. Strings making up the rows of a matrix or vector all must
have the same length. To enter several date strings, therefore, use a column vector and
be sure that all strings are the same length. Fill in with spaces or zeros. For example, to
create a vector of dates corresponding to irregular cash flows
DateFields = ["01/12/2001"

"02/14/2001*

*03/03/2001*

"06/14/2001"
*12/01/2001"];

DateFields actually becomes a 5-by-10 character array.

Do not mix numbers and strings in a matrix. If you do, MATLAB treats all entries as
characters. For example,

Item = [83 90 99 "14-Sep-19997]
becomes a 1-by-14 character array, not a 1-by-4 vector, and it contains
Item =

SZc14-Sep-1999

Output Arguments

Some functions return no arguments, some return just one, and some return multiple
arguments. Functions that return multiple arguments use the syntax

[A, B, C] = function(variables...)

to return arguments A, B, and C. If you omit all but one, the function returns the first
argument. Thus, for this example if you use the syntax

X = function(variables...)
function returns a value for A, but not for B or C.

Some functions that return vectors accept only scalars as arguments. Why could such
functions not accept vectors as arguments and return matrices, where each column in the
output matrix corresponds to an entry in the input vector? The answer is that the output
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vectors can be variable length and thus will not fit in a matrix without some convention
to indicate that the shorter columns are missing data.

Functions that require asset life as an input, and return values corresponding to
different periods over that life, cannot generally handle vectors or matrices as input
arguments. Those functions are:

amortize Amortization

depfixdb Fixed declining-balance depreciation
depgendb General declining-balance depreciation
depsoyd Sum of years' digits depreciation

For example, suppose you have a collection of assets such as automobiles and you want to
compute the depreciation schedules for them. The function depFixdb computes a stream
of declining-balance depreciation values for an asset. You might want to set up a vector
where each entry is the initial value of each asset. depfixdb also needs the lifetime of
an asset. If you were to set up such a collection of automobiles as an input vector, and

the lifetimes of those automobiles varied, the resulting depreciation streams would differ
in length according to the life of each automobile, and the output column lengths would
vary. A matrix must have the same number of rows in each column.

Interest Rate Arguments

One common argument, both as input and output, is interest rate. All Financial Toolbox
functions expect and return interest rates as decimal fractions. Thus an interest rate of
9.5% is indicated as 0.095.

More About

. “Analyze Sets of Numbers Using Matrix Functions” on page 1-4

. “Matrix Algebra Refresher” on page 1-7
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*  “Introduction” on page 2-2

+ “Handle and Convert Dates” on page 2-4

* “Format Currency” on page 2-11

+ “Charting Financial Data” on page 2-12

* “Analyzing and Computing Cash Flows” on page 2-17

* “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21
*  “Treasury Bills Defined” on page 2-34

+ “Computing Treasury Bill Price and Yield” on page 2-35
* “Term Structure of Interest Rates” on page 2-39

* “Pricing and Analyzing Equity Derivatives” on page 2-42
* “About Life Tables” on page 2-47

+ “Case Study for Life Tables Analysis” on page 2-50
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Introduction

Financial Toolbox software contains functions that perform many common financial
tasks, including:

“Handle and Convert Dates” on page 2-4

Calendar functions convert dates among different formats (including Excel® formats),
determine future or past dates, find dates of holidays and business days, compute
time differences between dates, find coupon dates and coupon periods for coupon
bonds, and compute time periods based on 360-, 365-, or 366-day years.

“Format Currency” on page 2-11

The toolbox includes functions for handling decimal values in bank (currency) formats
and as fractional prices.

“Charting Financial Data” on page 2-12

Charting functions produce various financial charts including Bollinger bands, high-
low-close charts, candlestick plots, point and figure plots, and moving-average plots.

“Analyzing and Computing Cash Flows” on page 2-17

Cash-flow evaluation and financial accounting functions compute interest rates, rates
of return, payments associated with loans and annuities, future and present values,
depreciation, and other standard accounting calculations associated with cash-flow
streams.

“Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

Securities Industry Association (SIA) compliant fixed-income functions compute
prices, yields, accrued interest, and sensitivities for securities such as bonds, zero-
coupon bonds, and Treasury bills. They handle odd first and last periods in price/yield
calculations, compute accrued interest and discount rates, and calculate convexity and
duration. Another set of functions analyzes term structure of interest rates, including
pricing bonds from yield curves and bootstrapping yield curves from market prices.

“Pricing and Analyzing Equity Derivatives” on page 2-42

Derivatives analysis functions compute prices, yields, and sensitivities for derivative
securities. They deal with both European and American options.

Black-Scholes functions work with European options. They compute delta, gamma,
lambda, rho, theta, and vega, as well as values of call and put options.
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Binomial functions work with American options, computing put and call prices.

“Analyzing Portfolios” on page 3-2

Portfolio analysis functions provide basic utilities to compute variances and
covariance of portfolios, find combinations to minimize variance, compute Markowitz
efficient frontiers, and calculate combined rates of return.

Modeling volatility in time series.

Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
functions model the volatility of univariate economic time series. (Econometrics
Toolbox™ software provides a more comprehensive and integrated computing
environment. For information, see the Econometrics Toolbox documentation or the
financial products Web page at http://www.mathworks.com/products/finprod.)


http://www.mathworks.com/products/finprod
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Handle and Convert Dates

In this section...

“Date Formats” on page 2-4
“Date Conversions” on page 2-5

“Current Date and Time” on page 2-8

“Determining Dates” on page 2-8

Date Formats

Since virtually all financial data is dated or derives from a time series, financial
functions must have extensive date-handling capabilities. You most often work with
date strings (14-Sep-1999) when dealing with dates. Financial Toolbox software works
internally with serial date numbers (for example, 730377). A serial date number
represents a calendar date as the number of days that has passed since a fixed base
date. In MATLAB software, serial date number 1 is January 1, 0000 A.D. MATLAB also
uses serial time to represent fractions of days beginning at midnight; for example, 6
p-m. equals 0.75 serial days. So 6:00 p.m. on 14-Sep-1999, in MATLAB, is date number
730377 .75.

Note If you specify a two-digit year, MATLAB assumes that the year lies within the
100-year period centered about the current year. See the function datenum for specific
information. MATLAB internal date handling and calculations generate no ambiguous
values. However, whenever possible, programmers should use serial date numbers or
date strings containing four-digit years.

Many toolbox functions that require dates accept either date strings or serial date
numbers. If you are dealing with a few dates at the MATLAB command-line level, date
strings are more convenient. If you are using toolbox functions on large numbers of dates,
as in analyzing large portfolios or cash flows, performance improves if you use date
numbers.

The Financial Toolbox software provides functions that convert date strings to serial date
numbers, and vice versa.
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Date Conversions

Functions that convert between date formats are

datedisp Displays a numeric matrix with date entries formatted as date
strings

datenum Converts a date string to a serial date number

datestr Converts a serial date number to a date string

m2xdate Converts MATLAB serial date number to Excel serial date number

x2mdate Converts Excel serial date number to MATLAB serial date number

Another function, datevec, converts a date number or date string to a date vector whose
elements are [Year Month Day Hour Minute Second]. Date vectors are mostly an
internal format for some MATLAB functions; you would not often use them in financial
calculations.

Input Conversions

The datenum function is important for using Financial Toolbox software efficiently.
datenum takes an input string in any of several formats, with "dd-mmm-yyyy*®, *mm/
dd/yyyy", or "dd-mmm-yyyy, hh:mm:ss.ss" most common. The input string can have
up to six fields formed by letters and numbers separated by any other characters:

* The day field is an integer from 1 through 31.

*  The month field is either an integer from 1 through 12 or an alphabetical string with
at least three characters.

* The year field is a nonnegative integer: if only two numbers are specified, then the
year is assumed to lie within the 100-year period centered about the current year; if
the year is omitted, the current year is used as the default.

* The hours, minutes, and seconds fields are optional. They are integers separated by
colons or followed by "am® or "pm*.

For example, if the current year is 1999, then these are all equivalent

"17-May-1999*
"17-May-99*
"17-may*

“"May 17, 1999*

2-5
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"5/17/99"
"5/17"

and both of these represent the same time.

"17-May-1999, 18:30"
"5/17/99/6:30 pm*©

The default format for numbers-only input follows the American convention. Thus 3/6 is
March 6, not June 3.

With datenum you can convert dates into serial date format, store them in a matrix
variable, then later pass the variable to a function. Alternatively, you can use datenum
directly in a function input argument list.

For example, consider the function bndprice that computes the price of a bond given the
yield-to-maturity. First set up variables for the yield-to-maturity, coupon rate, and the
necessary dates.

Yield = 0.07;
CouponRate = 0.08;
Settle = datenum("17-May-2000%);
Maturity = datenum("01-0Oct-2000%);

Then call the function with the variables

bndprice(Yield, CouponRate, Settle, Maturity)

Alternatively, convert date strings to serial date numbers directly in the function input
argument list.

bndprice(0.07, 0.08, datenum("17-May-20007), ...
datenum("01-0ct-2000"))

bndprice is an example of a function designed to detect the presence of date strings
and make the conversion automatically. For these functions date strings may be passed
directly.

bndprice(0.07, 0.08, "17-May-2000", *01-Oct-2000")

The decision to represent dates as either date strings or serial date numbers is often

a matter of convenience. For example, when formatting data for visual display or for
debugging date-handling code, it is often much easier to view dates as date strings
because serial date numbers are difficult to interpret. Alternatively, serial date numbers
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are just another type of numeric data, and can be placed in a matrix along with any other

numeric data for convenient manipulation.

Remember that if you create a vector of input date strings, use a column vector, and
be sure that all strings are the same length. Fill with spaces or zeros. See “Matrices of

String Input” on page 1-18.

Output Conversions

The function datestr converts a serial date number to one of 19 different date string
output formats showing date, time, or both. The default output for dates is a day-month-
year string, for example, 24-Aug-2000. This function is useful for preparing output

reports.

Format

01-Mar-2000 15:45:17

01-Mar-2000
03701700
Mar

M

3

03701

1

Wed

W

2000

99

MarO1
15:45:17
03:45:17 PM
15:45

03:45 PM
Q1-99

Q1

Description

day-month-year hour:minute:second
day-month-year
month/day/year

month, three letters

month, single letter

month

month/day

day of month

day of week, three letters

day of week, single letter

year, four numbers

year, two numbers

month year
hour:minute:second
hour:minute:second AM or PM
hour:minute

hour:minute AM or PM
calendar quarter-year

calendar quarter

2-7



2 Performing Common Financial Tasks

2-8

Current Date and Time

The functions today and now return serial date numbers for the current date, and the
current date and time, respectively.

today
ans =
730693
now
ans =
730693.48

The MATLAB function date returns a string for today's date.
date
ans =

26-Jul-2000

Determining Dates

The Financial Toolbox software provides many functions for determining specific
dates, including functions which account for holidays and other nontrading days. For
example, you schedule an accounting procedure for the last Friday of every month. The
Iweekdate function returns those dates for 2000; the 6 specifies Friday.

Fridates = lweekdate(6, 2000, 1:12);

Fridays = datestr(Fridates)

Fridays

28-Jan-2000
25-Feb-2000
31-Mar-2000
28-Apr-2000
26-May-2000
30-Jun-2000
28-Jul-2000
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25-Aug-2000
29-Sep-2000
27-0ct-2000
24-Nov-2000
29-Dec-2000

Or your company closes on Martin Luther King Jr. Day, which is the third Monday in
January. The nweekdate function determines those dates for 2001 through 2004.

MLKDates = nweekdate(3, 2, 2001:2004, 1);

MLKDays = datestr(MLKDates)

MLKDays

15-Jan-2001
21-Jan-2002
20-Jan-2003
19-Jan-2004

Accounting for holidays and other nontrading days is important when examining
financial dates. The Financial Toolbox software provides the hol idays function, which
contains holidays and special nontrading days for the New York Stock Exchange from
1950 through 2030, inclusive. In addition, you can use nyseclosures to evaluate

all known or anticipated closures of the New York Stock Exchange from January 1,

1885 to December 31, 2050. nyseclosures returns a vector of serial date numbers
corresponding to market closures between the dates StartDate and EndDate, inclusive.

In this example, you can use holidays to determine the standard holidays in the last
half of 2000:

LHHDates = holidays("1-Jul-2000", "31-Dec-2000");

LHHDays = datestr(LHHDates)

LHHDays

04-Jull-2000
04-Sep-2000
23-Nov-2000
25-Dec-2000

Now use the toolbox busdate function to determine the next business day after these
holidays.
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LHNextDates = busdate(LHHDates);

LHNextDays = datestr(LHNextDates)

LHNextDays

05-Jull-2000
05-Sep-2000
24-Nov-2000
26-Dec-2000

The toolbox also provides the cFdates function to determine cash-flow dates for
securities with periodic payments. This function accounts for the coupons per year, the
day-count basis, and the end-of-month rule. For example, to determine the cash-flow
dates for a security that pays four coupons per year on the last day of the month, on
an actual/365 day-count basis, enter the settlement date, the maturity date, and the
parameters.

PayDates = cfdates("14-Mar-2000", "30-Nov-2001°, 4, 3, 1);

PayDays = datestr(PayDates)

PayDays

31-May-2000
31-Aug-2000
30-Nov-2000
28-Feb-2001
31-May-2001
31-Aug-2001
30-Nov-2001

See Also

busdate | cfdates | date | datedisp | datenum | datestr | datevec | holidays
| Iweekdate | m2xdate | nweekdate | nyseclosures | x2mdate

Related Examples
. “Format Currency” on page 2-11

. “Charting Financial Data” on page 2-12
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Format Currency

Financial Toolbox software provides several functions to format currency and chart
financial data. The currency formatting functions are

cur2frac Converts decimal currency values to fractional values
cur2str Converts a value to Financial Toolbox bank format
frac2cur Converts fractional currency values to decimal values

These examples show their use.

Dec = frac2cur("12.1", 8)

returns Dec = 12.125, which is the decimal equivalent of 12-1/8. The second input
variable is the denominator of the fraction.

Str = cur2str(-8264, 2)

returns the string ($8264.00). For this toolbox function, the output format is a
numerical format with dollar sign prefix, two decimal places, and negative numbers in
parentheses; for example, ($123.45) and $6789.01. The standard MATLAB bank
format uses two decimal places, no dollar sign, and a minus sign for negative numbers;
for example, —123.45 and 6789.01.

See Also

busdate | cfdates | cur2frac | cur2str | date | datedisp | datenum |
datestr | datevec | frac2cur | holidays | lweekdate | m2xdate | nweekdate |
nyseclosures | x2mdate

Related Examples
. “Handle and Convert Dates” on page 2-4
. “Charting Financial Data” on page 2-12
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Charting Financial Data

2-12

In this section...

“Introduction” on page 2-12
“High-Low-Close Chart” on page 2-13

“Bollinger Chart” on page 2-14

Introduction

The following toolbox financial charting functions plot financial data and produce
presentation-quality figures quickly and easily.

bolling Bollinger band chart

bollinger Time series Bollinger band

candle Candlestick chart

candle Time series candle plot

pointfig Point and figure chart

highlow High, low, open, close chart

highlow Time series High-Low plot

movavg Leading and lagging moving averages chart

These functions work with standard MATLAB functions that draw axes, control
appearance, and add labels and titles. The toolbox also provides a comprehensive set
of charting functions that work with financial time series objects, see “Chart Technical
Indicators”.

Here are two plotting examples: a high-low-close chart of sample IBM" stock price data,
and a Bollinger band chart of the same data. These examples load data from an external
file (ibm.dat), then call the functions using subsets of the data. The MATLAB variable
ibm, which is created by loading ibm.dat, is a six-column matrix where each row is

a trading day's data and where columns 2, 3, and 4 contain the high, low, and closing
prices, respectively.

Note The data in ibm.dat is fictional and for illustrative use only.
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High-Low-Close Chart

Load the data and set up matrix dimensions. load and size are standard MATLAB®
functions.

load ibm.dat;
[ro, co] = size(ibm);

Open a figure window for the chart. Use the Financial Toolbox™ highlow function to
plot high, low, and close prices for the last 50 trading days in the data file. Add labels
and title, and set axes with standard MATLAB functions. Use the Financial Toolbox
dateaxis function to provide dates for the x-axis ticks.

figure;

highlow(ibm(ro-50:ro0,2), ibm(ro-50:ro,3),ibm(ro-50:ro0,4),[],"b");
xlabel (" ");

ylabel ("Price ($)");

title( " International Business Machines, 941231 - 950219%);
axis([0 50 -inf inf]);

dateaxis("x",6,"31-Dec-1994")
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International Business Machines, 941231 - 950219

Mo r M
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Bollinger Chart

The bol ling function in Financial Toolbox™ software produces a Bollinger band chart
using all the closing prices in an IBM® stock price matrix. A Bollinger band chart

plots actual data along with three other bands of data. The upper band is two standard
deviations above a moving average; the lower band is two standard deviations below that
moving average; and the middle band is the moving average itself. This example uses a
15-day moving average. First, load the data using the ibm.dat data file and then execute
the bol 1ing function to plot the Bollinger bands.

load ibm.dat;

[ro, co] = size(ibm);
bolling(ibm(:,4), 15, 0);
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Price ($)

axis([0 ro min(Cibm(:,4)) max(ibm(:,4))D);
ylabel ("Price ($)");

title(["International Business Machines®]);
dateaxis("x", 6,"31-Dec-1994%)

International Business Machines
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Specify the axes, labels, and titles. Use dateaxis to add the x-axis dates.
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For help using MATLAB® plotting functions, see “Create 2-D Graph and Customize
Lines” in the MATLAB documentation. See the MATLAB documentation for details on
the axis, title, xlabel, and ylabel functions.

See Also

bolling | bollinger | busdate | candle | candle | cfdates | cur2frac

| cur2str | date | dateaxis | datedisp | datenum | datestr | datevec |
frac2cur | highlow | highlow | holidays | lweekdate | m2xdate | movavg |
nweekdate | nyseclosures | pointfig | x2mdate

Related Examples
. “Handle and Convert Dates” on page 2-4

. “Format Currency” on page 2-11
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Analyzing and Computing Cash Flows

In this section...

“Introduction” on page 2-17
“Interest Rates/Rates of Return” on page 2-17
“Present or Future Values” on page 2-18

“Depreciation” on page 2-19

“Annuities” on page 2-19

Introduction

Financial Toolbox cash-flow functions compute interest rates and rates of return, present
or future values, depreciation streams, and annuities.

Some examples in this section use this income stream: an initial investment of $20,000
followed by three annual return payments, a second investment of $5,000, then four more
returns. Investments are negative cash flows, return payments are positive cash flows.

Stream = [-20000, 2000, 2500, 3500, -5000, 6500,...
9500, 9500, 9500];

Interest Rates/Rates of Return

Several functions calculate interest rates involved with cash flows. To compute the
internal rate of return of the cash stream, execute the toolbox function irr

ROR = irr(Stream)
which gives a rate of return of 11.72%.

The internal rate of return of a cash flow may not have a unique value. Every time the
sign changes in a cash flow, the equation defining irr can give up to two additional
answers. An 1rr computation requires solving a polynomial equation, and the number
of real roots of such an equation can depend on the number of sign changes in the
coefficients. The equation for internal rate of return is

ch + fy Fo+ fn
(1+7) (147) a+r)"

+ Investment =0,
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where Investment is a (negative) initial cash outlay at time 0, cf,, is the cash flow in the
nth period, and n is the number of periods. 1rr finds the rate r such that the present
value of the cash flow equals the initial investment. If all of the cf,s are positive there
is only one solution. Every time there is a change of sign between coefficients, up to two
additional real roots are possible.

Another toolbox rate function, effrr, calculates the effective rate of return given an
annual interest rate (also known as nominal rate or annual percentage rate, APR)
and number of compounding periods per year. To find the effective rate of a 9% APR
compounded monthly, enter

Rate = effrr(0.09, 12)
The answer 1s 9.38%.

A companion function nomrr computes the nominal rate of return given the effective
annual rate and the number of compounding periods.

Present or Future Values

The toolbox includes functions to compute the present or future value of cash flows at
regular or irregular time intervals with equal or unequal payments: fvFix, fvvar,
pvFfix, and pvvar. The -Fix functions assume equal cash flows at regular intervals,
while the —-var functions allow irregular cash flows at irregular periods.

Now compute the net present value of the sample income stream for which you computed
the internal rate of return. This exercise also serves as a check on that calculation
because the net present value of a cash stream at its internal rate of return should be
zero. Enter

NPV = pvvar(Stream, ROR)

which returns an answer very close to zero. The answer usually is not exactly zero due to
rounding errors and the computational precision of the computer.

Note Other toolbox functions behave similarly. The functions that compute a bond's
yield, for example, often must solve a nonlinear equation. If you then use that yield to
compute the net present value of the bond's income stream, it usually does not exactly
equal the purchase price, but the difference is negligible for practical applications.
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Depreciation

The toolbox includes functions to compute standard depreciation schedules: straight line,
general declining-balance, fixed declining-balance, and sum of years' digits. Functions
also compute a complete amortization schedule for an asset, and return the remaining
depreciable value after a depreciation schedule has been applied.

This example depreciates an automobile worth $15,000 over five years with a salvage
value of $1,500. It computes the general declining balance using two different
depreciation rates: 50% (or 1.5), and 100% (or 2.0, also known as double declining
balance). Enter

Declinel
Decline2

depgendb (15000, 1500, 5, 1.5)
depgendb (15000, 1500, 5, 2.0)

which returns

Declinel =

4500.00 3150.00 2205.00 1543.50 2101.50
Decline2 =

6000.00 3600.00 2160.00 1296.00 444 .00

These functions return the actual depreciation amount for the first four years and the
remaining depreciable value as the entry for the fifth year.

Annuities

Several toolbox functions deal with annuities. This first example shows how to compute
the interest rate associated with a series of loan payments when only the payment
amounts and principal are known. For a loan whose original value was $5000.00 and
which was paid back monthly over four years at $130.00/month:

Rate = annurate(4*12, 130, 5000, 0, 0)
The function returns a rate of 0.0094 monthly, or about 11.28% annually.

The next example uses a present-value function to show how to compute the initial
principal when the payment and rate are known. For a loan paid at $300.00/month over
four years at 11% annual interest

Principal = pvfix(0.11/12, 4*12, 300, 0, 0)

The function returns the original principal value of $11,607.43.
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The final example computes an amortization schedule for a loan or annuity. The original
value was $5000.00 and was paid back over 12 months at an annual rate of 9%.

[Prpmt, Intpmt, Balance, Payment] =
amortize(0.09/12, 12, 5000, O O)

This function returns vectors containing the amount of principal paid,

Prpmt = [399.76 402.76 405.78 408.82 411.89 414.97
418.09 421.22 424.38 427.56 430.77 434.00]

the amount of interest paid,

Intpmt = [37.50 34.50 31.48 28.44 25.37 22.28
19.17 16.03 12.88 9.69 6.49 3.26]

the remaining balance for each period of the loan,

Balance = [4600.24 4197.49 3791.71 3382.89 2971.01
2556.03 2137.94 1716.72 1292.34 864.77
434.00  0.00]

and a scalar for the monthly payment.

Payment = 437.26

See Also

effrr | fvfix | fvvar | irr | nomrr | pvFix | pvvar

Related Examples
. “Handle and Convert Dates” on page 2-4
. “Charting Financial Data” on page 2-12

. “Pricing and Computing Yields for Fixed-Income Securities” on page 2-21

2-20



Pricing and Computing Yields for Fixed-Income Securities

Pricing and Computing Yields for Fixed-Income Securities

In this section...

“Introduction” on page 2-21
“Fixed-Income Terminology” on page 2-21
“Framework” on page 2-25

“Default Parameter Values” on page 2-26
“Coupon Date Calculations” on page 2-28
“Yield Conventions” on page 2-29
“Pricing Functions” on page 2-29

“Yield Functions” on page 2-30

“Fixed-Income Sensitivities” on page 2-31

Introduction

The Financial Toolbox product provides functions for computing accrued interest, price,
yield, convexity, and duration of fixed-income securities. Various conventions exist for
determining the details of these computations. The Financial Toolbox software supports
conventions specified by the Securities Industry and Financial Markets Association
(SIFMA), used in the US markets, the International Capital Market Association
(ICMA), used mainly in the European markets, and the International Swaps and
Derivatives Association (ISDA). For historical reasons, SIFMA is referred to in Financial
Toolbox documentation as SIA and ISMA is referred to as International Capital Market
Association (ICMA).

Fixed-Income Terminology

Since terminology varies among texts on this subject, here are some basic definitions that
apply to these Financial Toolbox functions. The Glossary contains additional definitions.

The settlement date of a bond is the date when money first changes hands; that is, when a
buyer pays for a bond. It need not coincide with the issue date, which is the date a bond is
first offered for sale.

The first coupon date and last coupon date are the dates when the first and last coupons
are paid, respectively. Although bonds typically pay periodic annual or semiannual
coupons, the length of the first and last coupon periods may differ from the standard
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coupon period. The toolbox includes price and yield functions that handle these odd first
and/or last periods.

Successive quasi-coupon dates determine the length of the standard coupon period for
the fixed income security of interest, and do not necessarily coincide with actual coupon
payment dates. The toolbox includes functions that calculate both actual and quasi-
coupon dates for bonds with odd first and/or last periods.

Fixed-income securities can be purchased on dates that do not coincide with coupon
payment dates. In this case, the bond owner is not entitled to the full value of the
coupon for that period. When a bond is purchased between coupon dates, the buyer

must compensate the seller for the pro-rata share of the coupon interest earned from

the previous coupon payment date. This pro-rata share of the coupon payment is called
accrued interest. The purchase price, the price paid for a bond, is the quoted market price
plus accrued interest.

The maturity date of a bond is the date when the issuer returns the final face value, also
known as the redemption value or par value, to the buyer. The yield-to-maturity of a bond
1s the nominal compound rate of return that equates the present value of all future cash
flows (coupons and principal) to the current market price of the bond.

The period of a bond refers to the frequency with which the issuer of a bond makes
coupon payments to the holder.

Period of a Bond
Period Value Payment Schedule

No coupons (Zero coupon bond)
Annual

Semiannual

Tri-annual

Quarterly

S B~ W N = O

Bi-monthly
12 Monthly

The basis of a bond refers to the basis or day-count convention for a bond. Basis is
normally expressed as a fraction in which the numerator determines the number of days
between two dates, and the denominator determines the number of days in the year. For
example, the numerator of actual/actual means that when determining the number of
days between two dates, count the actual number of days; the denominator means that
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you use the actual number of days in the given year in any calculations (either 365 or 366
days depending on whether the given year is a leap year).

The day count convention determines how accrued interest is calculated and determines
how cash flows for the bond are discounted, by that means effecting price and yield
calculations. Furthermore, the SIA convention is to use the actual/actual day count
convention for discounting cash flows in all cases.

Basis of a Bond

Basis Value

Meaning

Description

0 (default)

actual/actual

Actual days held over actual
days in coupon period.
Denominator is 365 in most
years and 366 in a leap year.

30/360 (SIA)

Each month contains 30
days; a year contains 360
days. Payments are adjusted
for bonds that pay coupons
on the last day of February.

actual/360

Actual days held over 360.

actual/365

Actual days held over 365,
even in leap years.

30/360 PSA

Number of days in every
month is set to 30 (including
February). If the start date
of the period is either the
31st of a month or the last
day of February, the start
date is set to the 30th, while
if the start date is the 30th of
a month and the end date is
the 31st, the end date is set
to the 30th. The number of
days in a year is 360.

30/360 ISDA (International
Swap Dealers Association)

Variant of 30/360 with slight
differences for calculating
number of days in a month.
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Basis Value

Meaning

Description

6

30/360 European

Variant of 30/360 used
primarily in Europe.

actual/365 Japanese

All years contain 365 days.
Leap days are ignored.

actual/actual (ICMA)

Actual days held over actual
days in coupon period.
Denominator is 365 in most
years and 366 in a leap
year. This basis assumes an
annual compounding period.

actual/360 ICMA)

Actual days held over 360.
This basis assumes an
annual compounding period.

10

actual/365 (ICMA)

Actual days held over 365,
even in leap years. This
basis assumes an annual
compounding period.

11

30/360E (ICMA)

The number of days in every
month is set to 30. If the
start date or the end date

of the period is the 31st of a
month, that date is set to the
30th. The number of days in
a year 1s 360.

12

actual/365 (ISDA)

This day count fraction is
equal to the sum of number
of interest accrual days
falling with a leap year
divided by 366 and the
number of interest accrual
days not falling within a leap
year divided by 365.

13

BUS/252

The number of business
days between the previous
coupon payment and the
settlement data divided
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Basis Value Meaning Description

by 252. BUS/252 business
days are non-weekend,
non-holiday days. The
holidays.m file defines
holidays.

Note Although the concept of day count sounds deceptively simple, the actual calculation
of day counts can be complex. You can find a good discussion of day counts and the

formulas for calculating them in Chapter 5 of Stigum and Robinson, Money Market and
Bond Calculations in Appendix A.

The end-of-month rule affects a bond's coupon payment structure. When the rule is in
effect, a security that pays a coupon on the last actual day of a month will always pay
coupons on the last day of the month. This means, for example, that a semiannual bond
that pays a coupon on February 28 in nonleap years will pay coupons on August 31 in all
years and on February 29 in leap years.

End-of-Month Rule

End-of-Month Rule Value Meaning

1 (default) Rule in effect.

0 Rule not in effect.
Framework

Although not all Financial Toolbox functions require the same input arguments, they all
accept the following common set of input arguments.

Common Input Arguments

Input Meaning

Settle Settlement date
Maturity Maturity date

Period Coupon payment period
Basis Day-count basis
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Input Meaning

EndMonthRule End-of-month payment rule
IssueDate Bond issue date
FirstCouponDate First coupon payment date
LastCouponDate Last coupon payment date

Of the common input arguments, only Settle and Maturity are required. All others
are optional. They are set to the default values if you do not explicitly set them. By
default, the FirstCouponDate and LastCouponDate are nonapplicable. In other
words, if you do not specify FirstCouponDate and LastCouponDate, the bond is
assumed to have no odd first or last coupon periods. In this case, the bond is a standard
bond with a coupon payment structure based solely on the maturity date.

Default Parameter Values

To illustrate the use of default values in Financial Toolbox functions, consider the
cfdates function, which computes actual cash flow payment dates for a portfolio of fixed
income securities regardless of whether the first and/or last coupon periods are normal,
long, or short.

The complete calling syntax with the full input argument list is

CFlowDates = cfdates(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

while the minimal calling syntax requires only settlement and maturity dates

CFlowDates = cfdates(Settle, Maturity)
Single Bond Example

As an example, suppose that you have a bond with these characteristics:

Settle = "20-Sep-1999-
Maturity = "15-0Oct-2007"
Period =2

Basis =0
EndMonthRule =1

IssueDate = NaN
FirstCouponDate = NaN
LastCouponDate = NaN
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Note that Period, Basis, and EndMonthRule are set to their default values, and
IssueDate, FirstCouponDate, and LastCouponDate are set to NaN.

Formally, a NaN is an IEEE® arithmetic standard for Not-a-Number and is used to
indicate the result of an undefined operation (for example, zero divided by zero).
However, NaN is also a convenient placeholder. In the SIA functions of Financial Toolbox
software, NaN indicates the presence of a nonapplicable value. It tells the Financial
Toolbox functions to ignore the input value and apply the default. Setting IssueDate,
FirstCouponDate, and LastCouponDate to NaN in this example tells cfdates to
assume that the bond has been issued before settlement and that no odd first or last
coupon periods exist.

Having set these values, all these calls to cfdates produce the same result.

cfdates(Settle, Maturity)

cfdates(Settle, Maturity, Period)

cfdates(Settle, Maturity, Period, []1)

cfdates(Settle, Maturity, [], Basis)

cfdates(Settle, Maturity, [1, [D

cfdates(Settle, Maturity, Period, [], EndMonthRule)
cfdates(Settle, Maturity, Period, [], NaN)

cfdates(Settle, Maturity, Period, [], [1, IssueDate)
cfdates(Settle, Maturity, Period, [], [1, IssueDate, [1, [
cfdates(Settle, Maturity, Period, []1, [1. [1. [1.LastCouponDate)
cfdates(Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate)

Thus, leaving a particular input unspecified has the same effect as passing an empty
matrix ([]) or passing a NaN — all three tell cfdates (and other Financial Toolbox
functions) to use the default value for a particular input parameter.

Bond Portfolio Example

Since the previous example included only a single bond, there was no difference between
passing an empty matrix or passing a NaN for an optional input argument. For a
portfolio of bonds, however, using NaN as a placeholder is the only way to specify default
acceptance for some bonds while explicitly setting nondefault values for the remaining
bonds in the portfolio.

Now suppose that you have a portfolio of two bonds.

Settle
Maturity

"20-Sep-1999*
[*15-0ct-2007"; "15-0ct-2010"]
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These calls to cFdates all set the coupon period to its default value (Period = 2) for
both bonds.

cfdates(Settle, Maturity, 2)
cfdates(Settle, Maturity, [2 2])
cfdates(Settle, Maturity, [1)
cfdates(Settle, Maturity, NaN)
cfdates(Settle, Maturity, [NaN NaN])
cfdates(Settle, Maturity)

The first two calls explicitly set Period = 2. Since Maturity is a 2-by-1 vector of
maturity dates, cfdates knows that you have a two-bond portfolio.

The first call specifies a single (that is, scalar) 2 for Period. Passing a scalar tells
cfdates to apply the scalar-valued input to all bonds in the portfolio. This is an example
of implicit scalar-expansion. The settlement date has been implicit scalar-expanded as
well.

The second call also applies the default coupon period by explicitly passing a two-element
vector of 2's. The third call passes an empty matrix, which cfdates interprets as an
invalid period, for which the default value is used. The fourth call is similar, except that
a NaN has been passed. The fifth call passes two NaN's, and has the same effect as the
third. The last call passes the minimal input set.

Finally, consider the following calls to cfdates for the same two-bond portfolio.

cfdates(Settle, Maturity, [4 NaN])
cfdates(Settle, Maturity, [4 2])

The first call explicitly sets Period = 4 for the first bond and implicitly sets the default
Period = 2 for the second bond. The second call has the same effect as the first but
explicitly sets the periodicity for both bonds.

The optional input Period has been used for illustrative purpose only. The default-

handling process illustrated in the examples applies to any of the optional input
arguments.

Coupon Date Calculations

Calculating coupon dates, either actual or quasi dates, is notoriously complicated.
Financial Toolbox software follows the SIA conventions in coupon date calculations.
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The first step in finding the coupon dates associated with a bond is to determine the
reference, or synchronization date (the sync date). Within the SIA framework, the order
of precedence for determining the sync date is:

1 The first coupon date
2 The last coupon date
3 The maturity date

In other words, a Financial Toolbox function first examines the FirstCouponDate
input. If FirstCouponDate is specified, coupon payment dates and quasi-coupon dates
are computed with respect to FirstCouponDate; if FirstCouponDate is unspecified,
empty ([ 1), or NaN, then the LastCouponDate is examined. If LastCouponDate

is specified, coupon payment dates and quasi-coupon dates are computed with

respect to LastCouponDate. If both FirstCouponDate and LastCouponDate are
unspecified, empty ([]), or NaN, the Maturity (a required input argument) serves as the
synchronization date.

Yield Conventions

There are two yield and time factor conventions that are used in the Financial Toolbox
software — these are determined by the input basis. Specifically, bases O to 7 are
assumed to have semiannual compounding, while bases 8 to 12 are assumed to

have annual compounding regardless of the period of the bond's coupon payments
(including zero-coupon bonds). In addition, any yield-related sensitivity (that is, duration
and convexity), when quoted on a periodic basis, follows this same convention. (See
bndconvp, bndconvy, bnddurp, bnddury, and bndkrdur.)

Pricing Functions

This example shows how easily you can compute the price of a bond with an odd
first period using the function bndprice. Assume that you have a bond with these
characteristics:

Settle = "11-Nov-1992*°;
Maturity = "01-Mar-2005";
IssueDate = "15-0ct-1992";
FirstCouponDate = "01-Mar-1993";
CouponRate = 0.0785;
Yield = 0.0625;
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Allow coupon payment period (Period = 2), day-count basis (Basis = 0), and end-
of-month rule (EndMonthRule = 1) to assume the default values. Also, assume that
there is no odd last coupon date and that the face value of the bond is $100. Calling the
function

[Price, Accruedint] = bndprice(Yield, CouponRate, Settle,
Maturity, [1., [1., [1, IssueDate, FirstCouponDate)

returns a price of $113.60 and accrued interest of $0.59.

Similar functions compute prices with regular payments, odd first and last periods, and
prices of Treasury bills and discounted securities such as zero-coupon bonds.

Note bndprice and other functions use nonlinear formulas to compute the price of a
security. For this reason, Financial Toolbox software uses Newton's method when solving
for an independent variable within a formula. See any elementary numerical methods
textbook for the mathematics underlying Newton's method.

Yield Functions

To illustrate toolbox yield functions, compute the yield of a bond that has odd first and
last periods and settlement in the first period. First set up variables for settlement,
maturity date, issue, first coupon, and a last coupon date.

Settle = "12-Jan-2000";
Maturity = "01-0Oct-2001";
IssueDate = "01-Jan-2000";
FirstCouponDate = "15-Jan-2000";
LastCouponDate = "15-Apr-2000-;

Assume a face value of $100. Specify a purchase price of $95.70, a coupon rate of 4%,
quarterly coupon payments, and a 30/360 day-count convention (Basis = 1).

Price = 95.7;
CouponRate = 0.04;
Period = 4;
Basis =1;
EndMonthRule = 1;

Calling the function

Yield = bndyield(Price, CouponRate, Settle, Maturity, Period,...
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Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
returns

Yield = 0.0659 (6.60%).

Fixed-Income Sensitivities

Financial Toolbox software supports the following options for managing interest-rate risk
for one or more bonds:

* bnddurp and bnddury support duration and convexity analysis based on market
quotes and assume parallel shifts in the bond yield curve.

* bndkrdur supports key rate duration based on a market yield curve and can model
nonparallel shifts in the bond yield curve.

Calculating Duration and Convexity for Bonds

The toolbox includes functions to perform sensitivity analysis such as convexity and the
Macaulay and modified durations for fixed-income securities. The Macaulay duration
of an income stream, such as a coupon bond, measures how long, on average, the owner
waits before receiving a payment. It is the weighted average of the times payments are
made, with the weights at time T equal to the present value of the money received at
time T. The modified duration is the Macaulay duration discounted by the per-period
interest rate; that is, divided by (1+rate/frequency).

To illustrate, the following example computes the annualized Macaulay and modified
durations, and the periodic Macaulay duration for a bond with settlement (12-Jan-2000)
and maturity (01-Oct-2001) dates as above, a 5% coupon rate, and a 4.5% yield to
maturity. For simplicity, any optional input arguments assume default values (that is,
semiannual coupons, and day-count basis = 0 (actual/actual), coupon payment structure
synchronized to the maturity date, and end-of-month payment rule in effect).

CouponRate = 0.05;
Yield = 0.045;

[ModDuration, YearDuration, PerDuration] = bnddury(Yield, ...
CouponRate, Settle, Maturity)

The durations are

ModDuration = 1.6107 (years)
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YearDuration
PerDuration

= 1.6470 (years)

= 3.2940 (semiannual periods)

Note that the semiannual periodic Macaulay duration (PerDuration) is twice the
annualized Macaulay duration (YearDuration).

Calculating Key Rate Durations for Bonds

Key rate duration enables you to evaluate the sensitivity and price of a bond to
nonparallel changes in the spot or zero curve by decomposing the interest rate risk along
the spot or zero curve. Key rate duration refers to the process of choosing a set of key
rates and computing a duration for each rate. Specifically, for each key rate, while the
other rates are held constant, the key rate is shifted up and down (and intermediate cash
flow dates are interpolated), and then the present value of the security given the shifted
curves is computed.

The calculation of bndkrdur supports:

(PVdown - PVup)
(PV x ShiftValue x 2)

krdur, =

Where PV is the current value of the instrument, PV_up and PV_down are the new
values after the discount curve has been shocked, and ShiftValue is the change in
interest rate. For example, if key rates of 3 months, 1, 2, 3, 5, 7, 10, 15, 20, 25, 30 years
were chosen, then a 30-year bond might have corresponding key rate durations of:

3M 1Y 2Y 3Y 5Y Y 10Y 15Y 20Y 25Y 30Y
.01 .04 .09 21 4 .65 1.27 1.71 1.68 1.83 7.03

The key rate durations add up to approximately equal the duration of the bond.

For example, compute the key rate duration of the U.S. Treasury Bond with maturity
date of August 15, 2028 and coupon rate of 5.5%.

Settle = datenum("18-Nov-20087);
CouponRate = 5.500/100;

Maturity = datenum("15-Aug-20287);
Price = 114.83;

For the ZeroData information on the current spot curve for this bond, refer to http://
www.treas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml:


http://www.treas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml
http://www.treas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml
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ZeroDates = daysadd(Settle ,[30 90 180 360 360*2 360*3 360*5 ...
360*7 360*10 360*20 360*30]);
ZeroRates = ([0.06 0.12 0.81 1.08 1.22 1.53 2.32 2.92 3.68 4.42 4.20]/100)";

Compute the key rate duration for a specific set of rates (choose this based on the
maturities of the available hedging instruments):

krd = bndkrdur([ZeroDates ZeroRates],CouponRate,Settle,Maturity, "keyrates”,[2 5 10 20])

krd =
0.2865 0.8729 2.6451 8.5778
Note, the sum of the key rate durations approximately equals the duration of the bond:

[sum(krd) bnddurp(Price,CouponRate,Settle,Maturity)]

ans =

12.3823 12.3919

See Also
bndconvp | bndconvy | bnddurp | bnddury | bndkrdur

Related Examples

. “Handle and Convert Dates” on page 2-4

. “Charting Financial Data” on page 2-12

. “Term Structure of Interest Rates” on page 2-39

. “Computing Treasury Bill Price and Yield” on page 2-35

More About
. “Treasury Bills Defined” on page 2-34
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Treasury Bills Defined

Treasury bills are short-term securities (issued with maturities of 1 year or less) sold by
the United States Treasury. Sales of these securities are frequent, usually weekly. From
time to time, the Treasury also offers longer duration securities called Treasury notes
and Treasury bonds.

A Treasury bill is a discount security. The holder of the Treasury bill does not receive
periodic interest payments. Instead, at the time of sale, a percentage discount is applied
to the face value. At maturity, the holder redeems the bill for full face value.

The basis for Treasury bill interest calculation is actual/360. Under this system, interest
accrues on the actual number of elapsed days between purchase and maturity, and each
year contains 360 days.

See Also
tbilldisc2yield | tbillprice | tbillrepo | thillvalOl | thillyield |
tbhillyield2disc | tbl2bond | tr2bonds | zbtprice | zbtyield

Related Examples

. “Handle and Convert Dates” on page 2-4

. “Charting Financial Data” on page 2-12

. “Term Structure of Interest Rates” on page 2-39

. “Computing Treasury Bill Price and Yield” on page 2-35
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Computing Treasury Bill Price and Yield

In this section...

“Introduction” on page 2-35
“Treasury Bill Repurchase Agreements” on page 2-35

“Treasury Bill Yields” on page 2-37

Introduction

Financial Toolbox software provides the following suite of functions for computing price
and yield on Treasury bills.

Treasury Bill Functions

Function Purpose
tbilldisc2yield Convert discount rate to yield.
tbillprice Price Treasury bill given its yield or discount rate.
tbillrepo Break-even discount of repurchase agreement.
tbillyield Yield and discount of Treasury bill given its price.
tbillyield2disc Convert yield to discount rate.
tbillvalOl The value of 1 basis point given the characteristics of
the Treasury bill, as represented by its settlement and
maturity dates. You can relate the basis point to discount,
money-market, or bond-equivalent yield.

For all functions with yield in the computation, you can specify yield as money-market
or bond-equivalent yield. The functions all assume a face value of $100 for each Treasury

bill.

Treasury Bill Repurchase Agreements

The following example shows how to compute the break-even discount rate. This is the
rate that correctly prices the Treasury bill such that the profit from selling the tail equals
0.

Maturity = "26-Dec-2002";
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InitialDiscount = 0.0161;
PurchaseDate = "26-Sep-2002-;
SaleDate "26-0ct-2002";
RepoRate 0.0149;

BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ...
PurchaseDate, SaleDate, Maturity)

BreakevenDiscount =
0.0167

You can check the result of this computation by examining the cash flows in and out from
the repurchase transaction. First compute the price of the Treasury bill on the purchase
date (September 26).

PriceOnPurchaseDate = tbillprice(InitialDiscount, ...
PurchaseDate, Maturity, 3)

PriceOnPurchaseDate =
99.5930

Next compute the interest due on the repurchase agreement.

Repolnterest = ...
RepoRate*PriceOnPurchaseDate*days360(PurchaseDate,SaleDate)/360

Repolnterest =
0.1237
Repolnterest for a 1.49% 30-day term repurchase agreement (30/360 basis) is 0.1237.

Finally, compute the price of the Treasury bill on the sale date (October 26).

PriceOnSaleDate = tbillprice(BreakevenDiscount, SaleDate, ...
Maturity, 3)

PriceOnSaleDate =
99.7167

Examining the cash flows, observe that the break-even discount causes the sum of the
price on the purchase date plus the accrued 30-day interest to be equal to the price on
sale date. The next table shows the cash flows.
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Cash Flows from Repurchase Agreement

Date Cash Out Flow Cash In Flow
9/26/2002 Purchase T-bill 99.593 Repo money 99.593
10/26/2002 Payment of repo 99.593 Sell T-bill 99.7168
Repo interest 0.1238
Total 199.3098 199.3098
Treasury Bill Yields

Using the same data as before, you can examine the money-market and bond-
equivalent yields of the Treasury bill at the time of purchase and sale. The function
thilldisc2yield can perform both computations at one time.

Maturity = "26-Dec-2002";

InitialDiscount = 0.0161;

PurchaseDate = "26-Sep-2002";

SaleDate = "26-0ct-2002";

RepoRate = 0.0149;

BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount,
PurchaseDate, SaleDate, Maturity)

[BEYield, MMYield] = ...
thilldisc2yield([InitialDiscount; BreakevenDiscount],
[PurchaseDate; SaleDate], Maturity)

BreakevenDiscount =

0.0167

BEYield =
0.0164
0.0170

MMYield =

0.0162
0.0168
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For the short Treasury bill (fewer than 182 days to maturity), the money-market yield is
360/365 of the bond-equivalent yield, as this example shows.

See Also

tbilldisc2yield | tbillprice | tbillrepo | thillvalOl | thillyield |
tbhillyield2disc | tbl2bond | tr2bonds | zbtprice | zbtyield

Related Examples
. “Handle and Convert Dates” on page 2-4
. “Charting Financial Data” on page 2-12

. “Term Structure of Interest Rates” on page 2-39

More About

. “Treasury Bills Defined” on page 2-34
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Term Structure of Interest Rates

In this section...

“Introduction” on page 2-39

“Deriving an Implied Zero Curve” on page 2-40

Introduction

The Financial Toolbox product contains several functions to derive and analyze interest
rate curves, including data conversion and extrapolation, bootstrapping, and interest-
rate curve conversion functions.

One of the first problems in analyzing the term structure of interest rates is dealing with
market data reported in different formats. Treasury bills, for example, are quoted with
bid and asked bank-discount rates. Treasury notes and bonds, on the other hand, are
quoted with bid and asked prices based on $100 face value. To examine the full spectrum
of Treasury securities, analysts must convert data to a single format. Financial Toolbox
functions ease this conversion. This brief example uses only one security each; analysts
often use 30, 100, or more of each.

First, capture Treasury bill quotes in their reported format

% Maturity Days Bid Ask AskYield
TBill = [datenum("12/26/2000%) 53 0.0503 0.0499 0.0510];

then capture Treasury bond quotes in their reported format

% Coupon Maturity Bid Ask AskYield
TBond = [0.08875 datenum(2001,11,5) 103+4/32 103+6/32 0.0564];

and note that these quotes are based on a November 3, 2000 settlement date.
Settle = datenum("3-Nov-20007);

Next use the toolbox tbhl12bond function to convert the Treasury bill data to Treasury
bond format.

TBTBond = tbl2bond(TBill)

TBTBond

0 730846 99.26 99.27 0.05
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(The second element of TBTBond is the serial date number for December 26, 2000.)

Now combine short-term (Treasury bill) with long-term (Treasury bond) data to set up
the overall term structure.

TBondsAll = [TBTBond; TBond]

TBondsAl l
0 730846 99.26 99.27 0.05
0.09 731160 103.13 103.19 0.06

The Financial Toolbox software provides a second data-preparation function,tr2bonds,
to convert the bond data into a form ready for the bootstrapping functions. tr2bonds
generates a matrix of bond information sorted by maturity date, plus vectors of prices
and yields.

[Bonds, Prices, Yields] = tr2bonds(TBondsAll);

Deriving an Implied Zero Curve

Using this market data, you can use one of the Financial Toolbox bootstrapping functions
to derive an implied zero curve. Bootstrapping is a process whereby you begin with
known data points and solve for unknown data points using an underlying arbitrage
theory. Every coupon bond can be valued as a package of zero-coupon bonds which mimic
its cash flow and risk characteristics. By mapping yields-to-maturity for each theoretical
zero-coupon bond, to the dates spanning the investment horizon, you can create a
theoretical zero-rate curve. The Financial Toolbox software provides two bootstrapping
functions: zbtprice derives a zero curve from bond data and prices, and zbtyield
derives a zero curve from bond data and yields. Using zbtprice

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle)

ZeroRates =

CurveDates =

730846
731160

CurveDates gives the investment horizon.
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datestr(CurveDates)

ans =

26-Dec-2000
05-Nov-2001

Additional Financial Toolbox functions construct discount, forward, and par yield curves
from the zero curve, and vice versa.

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...

Settle);

[FwdRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle);

[PYIdRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...
Settle);

See Also

thilldisc2yield | thillprice | tbillrepo | tbhillvalOl | thillyield |
tbhillyield2disc | tbl2bond | tr2bonds | zbtprice | zbtyield

Related Examples

. “Handle and Convert Dates” on page 2-4

. “Charting Financial Data” on page 2-12

. “Computing Treasury Bill Price and Yield” on page 2-35

More About
. “Treasury Bills Defined” on page 2-34
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In this section...

“Introduction” on page 2-42
“Sensitivity Measures” on page 2-42

“Analysis Models” on page 2-43

Introduction

These toolbox functions compute prices, sensitivities, and profits for portfolios of options
or other equity derivatives. They use the Black-Scholes model for European options

and the binomial model for American options. Such measures are useful for managing
portfolios and for executing collars, hedges, and straddles.

Sensitivity Measures

There are six basic sensitivity measures associated with option pricing: delta, gamma,
lambda, rho, theta, and vega — the “greeks.” The toolbox provides functions for
calculating each sensitivity and for implied volatility.

Delta

Delta of a derivative security is the rate of change of its price relative to the price of
the underlying asset. It is the first derivative of the curve that relates the price of the
derivative to the price of the underlying security. When delta is large, the price of the
derivative is sensitive to small changes in the price of the underlying security.

Gamma

Gamma of a derivative security is the rate of change of delta relative to the price of the
underlying asset; that is, the second derivative of the option price relative to the security
price. When gamma is small, the change in delta is small. This sensitivity measure is
important for deciding how much to adjust a hedge position.

Lambda

Lambda, also known as the elasticity of an option, represents the percentage change in
the price of an option relative to a 1% change in the price of the underlying security.
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Rho
Rho is the rate of change in option price relative to the risk-free interest rate.
Theta

Theta is the rate of change in the price of a derivative security relative to time. Theta is
usually very small or negative since the value of an option tends to drop as it approaches
maturity.

Vega

Vega is the rate of change in the price of a derivative security relative to the volatility

of the underlying security. When vega is large the security is sensitive to small changes
in volatility. For example, options traders often must decide whether to buy an option to
hedge against vega or gamma. The hedge selected usually depends upon how frequently
one rebalances a hedge position and also upon the standard deviation of the price of the
underlying asset (the volatility). If the standard deviation is changing rapidly, balancing
against vega is usually preferable.

Implied Volatility

The implied volatility of an option is the standard deviation that makes an option price
equal to the market price. It helps determine a market estimate for the future volatility
of a stock and provides the input volatility (when needed) to the other Black-Scholes
functions.

Analysis Models

Toolbox functions for analyzing equity derivatives use the Black-Scholes model for
European options and the binomial model for American options. The Black-Scholes
model makes several assumptions about the underlying securities and their behavior.
The binomial model, on the other hand, makes far fewer assumptions about the
processes underlying an option. For further explanation, see Options, Futures, and Other
Derivatives by John Hull in Appendix A.

Black-Scholes Model
Using the Black-Scholes model entails several assumptions:

* The prices of the underlying asset follow an Ito process. (See Hull, page 222.)

* The option can be exercised only on its expiration date (European option).
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* Short selling is permitted.

* There are no transaction costs.

+ All securities are divisible.

* There is no riskless arbitrage.

* Trading is a continuous process.

* The risk-free interest rate is constant and remains the same for all maturities.

If any of these assumptions is untrue, Black-Scholes may not be an appropriate model.

To illustrate toolbox Black-Scholes functions, this example computes the call and put
prices of a European option and its delta, gamma, lambda, and implied volatility. The
asset price is $100.00, the exercise price is $95.00, the risk-free interest rate is 10%, the
time to maturity is 0.25 years, the volatility is 0.50, and the dividend rate is 0. Simply
executing the toolbox functions

[OptCall, OptPut] = blsprice(100, 95, 0.10, 0.25, 0.50, 0);
[CallVal, Putval] = blsdelta(100, 95, 0.10, 0.25, 0.50, 0);
GammavVal = blsgamma(100, 95, 0.10, 0.25, 0.50, 0);

VegaVal = blsvega(100, 95, 0.10, 0.25, 0.50, 0);

[LamCall, LamPut] = blslambda(100, 95, 0.10, 0.25, 0.50, 0);

yields:

*  The option call price OptCall = $13.70

* The option put price OptPut = $6.35

+ delta for a call Cal IVal = 0.6665 and delta for a put PutvVal =-0.3335

+ gamma GammaVal =0.0145

+ vega VegaVal =18.1843

* lambda for a call LamCall = 4.8664 and lambda for a put LamPut =—-5.2528

Now as a computation check, find the implied volatility of the option using the call option
price from blsprice.

Volatility = blsimpv(100, 95, 0.10, 0.25, OptCall);
The function returns an implied volatility of 0.500, the original blsprice input.
Binomial Model

The binomial model for pricing options or other equity derivatives assumes that the
probability over time of each possible price follows a binomial distribution. The basic



Pricing and Analyzing Equity Derivatives

assumption is that prices can move to only two values, one up and one down, over any
short time period. Plotting the two values, and then the subsequent two values each,
and then the subsequent two values each, and so on over time, is known as “building a
binomial tree.” This model applies to American options, which can be exercised any time
up to and including their expiration date.

This example prices an American call option using a binomial model. Again, the asset
price is $100.00, the exercise price is $95.00, the risk-free interest rate is 10%, and the
time to maturity is 0.25 years. It computes the tree in increments of 0.05 years, so there
are 0.25/0.05 = 5 periods in the example. The volatility is 0.50, this is a call (Flag = 1),
the dividend rate is 0, and it pays a dividend of $5.00 after three periods (an ex-dividend
date). Executing the toolbox function

[StockPrice, OptionPrice] = binprice(100, 95, 0.10, 0.25,...
0.05, 0.50, 1, 0, 5.0, 3);

returns the tree of prices of the underlying asset

StockPrice =
100.00 111.27 123.87 137.96 148.69 166.28
89.97 100.05 111.32 118.90 132.96
0 0 81.00 90.02 95.07 106.32
0 0 0 72.98 76.02 85.02
0 0 0 0 60.79 67.98
0 0 0 0 0 54.36

and the tree of option values.

OptionPrice =

12.10 19.17 29.35 42 .96 54.17 71.28
0 5.31 9.41 16.32 24.37 37.96
0 0 1.35 2.74 5.57 11.32
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

The output from the binomial function is a binary tree. Read the StockPrice matrix
this way: column 1 shows the price for period 0, column 2 shows the up and down prices
for period 1, column 3 shows the up-up, up-down, and down-down prices for period 2, and
so on. Ignore the zeros. The OptionPrice matrix gives the associated option value for
each node in the price tree. Ignore the zeros that correspond to a zero in the price tree.
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See Also

binprice | blkimpv | blkprice | blsdelta | blsgamma | blsimpv | blslambda |
blsprice | blsrho | blstheta | blsvega | opprofit

Related Examples

. “Handle and Convert Dates” on page 2-4

. “Charting Financial Data” on page 2-12

. “Greek-Neutral Portfolios of European Stock Options” on page 10-18
. “Plotting Sensitivities of an Option” on page 10-30

. “Plotting Sensitivities of a Portfolio of Options” on page 10-31
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About Life Tables

Life tables are used for life insurance and work with the probability distribution

of human mortality. This distribution, which is age-dependent, has a number of
characteristic features that are consequences of biological, cultural, and behavioral
factors. In most cases, the practitioners of life studies use life tables that contain age-
dependent series for specific demographics. The tables are in a standard format with
standard notation that is specific to the life studies field. An example of a life table is
shown in Table 1 from CDC life tables for the United States.

Table 1. Life table for the total population: United States, 2009

Total
Probabity Number Person-years number of

of dying Number dying ved Dersar-years Expectation
between suniving to petween between Iived above of iz
agesxand x+ 1 age x agesxandx+1 | agesxandx+1 age x atage x

Age (years) . I, d, L T, e

= 0006372 100,000 637 99,484 7846.926 785
=2 0.000407 3363 @ 92,343 7747 481 780
23 0000274 59322 o7 95,309 7,648,130 770
a4 0000209 99295 21 99.285 760
45 0000160 93274 1 09,25 750
55 0000150 99259 15 99251 781
&7 0000135 99244 1 99.257 731
78 0000122 59230 12 L 721
] 0000108 98218 1 9213 71
10 0000095 99,20 3 9203 701
- 0.000087 53,198 E ESE 621
-1 0000093 59,189 3 9,185 8.1
12-13 0000127 99180 1 99174 671
i 0000133 23,167 18 59,158 661
1415 0000279 93148 % 9134 651
1516 0000370 %121 7 99102 621
1617 0000454 Y 5 906 632
i7-18 0000537 99039 53 s m2 622
16-19 0000615 98966 6 9955 612
1820 .. 000069 93925 & LS 5962175 803

In many cases, these life tables can have numerous variations such as abridged tables
(which pose challenges due to the granularity of the data) and different termination
criteria (that can make it difficult to compare tables or to compute life expectancies).

Most raw life tables have one or more of the first three series in this table (q,, ., and d,)
and the notation for these three series is standard in the field.

* The q, series is basically the discrete hazard function for human mortality.

* The I, series is the survival function multiplied by a radix of 100,000.

* The d, series is the discrete probability density for the distribution as a function of

age.

Financial Toolbox can handle arbitrary life table data supporting several standard
models of mortality and provides various interpolation methods to calibrate and analyze
the life table data.

Although primarily designed for life insurance applications, the life tables functions
(Lifetableconv, lifetablefit, and lifetablegen can also be used by social
scientists, behavioral psychologists, public health officials, and medical researchers.
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Life Tables Theory

Life tables are based on hazard functions and survival functions which are, in turn,
derived from probability distributions. Specifically, given a continuous probability
distribution, its cumulative distribution function is F(x) and its probability density
function is f(x) = d F(x)/dx.

For the analysis of mortality, the random variable of interest X is the distribution of ages
at which individuals die within a population. So, the probability that someone dies by age
x 18

Pr[X <x]=F(x)

The survival function, (s(x)), which characterizes the probability that an individual lives
beyond a specified age x > 0, is

s(x) = Pr[X > x]
=1-F(x)

For a continuous probability distribution, the hazard function is a function of the survival
function with

A(x) = lim Prix <X <x+Ax | X 2 «x]

Ax—0 Ax
1 d(s(x)

s(x) dx

and the survival functions is a function of the hazard function with
X
s(x) = exp| — j hE)dE
0

Life table models generally specify either the hazard function or the survival function.
However, life tables are discrete and work with discrete versions of the hazard

and survival functions. Three series are used for life tables and the notation is the
convention. The discrete hazard function is denoted as
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q, = h(x)
1 s(x+1)
s(x)

which is the probability a person at age x dies by age x + 1 (where x is in years). The
discrete survival function is presented in terms of an initial number of survivors at birth
called the life table radix (which is usually 100,000 individuals) and is denoted as

L, =lys(x)

with radix /, = 100000. This number, I, represents the number of individuals out of
100,000 at birth who are still alive at age x.

A third series is related to the probability density function which is the number of
"standardized" deaths in a given year denoted as

dx = lx _lx+1

Based on a few additional rules about how to initialize and terminate these series, any
one series can be derived from any of the other series.

See Also
lifetableconv | lifetablefit | lifetablegen

Related Examples
. “Case Study for Life Tables Analysis” on page 2-50
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Case Study for Life Tables Analysis

This example shows how to use the basic workflow for life tables.

Load the life table data file.

load us_lifetable 2009

Calibrate life table from survival data with the default heligman-pollard parametric
model.

a = lifetablefit(x, IxX);
Generate life table series from the calibrated mortality model.

gx = lifetablegen((0:100), a);
display(gx(1:40,:))

ans =
0.0063 0.0069 0.0057
0.0005 0.0006 0.0004
0.0002 0.0003 0.0002
0.0002 0.0002 0.0002
0.0001 0.0001 0.0001
0.0001 0.0001 0.0001
0.0001 0.0001 0.0001
0.0001 0.0001 0.0001
0.0001 0.0001 0.0001
0.0001 0.0001 0.0001
0.0001 0.0001 0.0001
0.0001 0.0001 0.0001
0.0002 0.0002 0.0001
0.0002 0.0002 0.0002
0.0002 0.0003 0.0002
0.0003 0.0004 0.0002
0.0004 0.0005 0.0002
0.0005 0.0006 0.0003
0.0006 0.0008 0.0003
0.0007 0.0009 0.0003
0.0008 0.0011 0.0003
0.0008 0.0012 0.0004
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0.0009
0.0009
0.0010
0.0010
0.0010
0.0010
0.0010
0.0010
0.0011
0.0011
0.0011
0.0011
0.0011
0.0012
0.0012
0.0013
0.0014
0.0015

0.0013
0.0014
0.0014
0.0015
0.0015
0.0015
0.0015
0.0014
0.0014
0.0014
0.0014
0.0014
0.0014
0.0015
0.0015
0.0016
0.0017
0.0018

eNeololoNoloooololololNolNoNoNeolNoNe)

-0004
-0005
-0005
-0005
-0006
-0006
-0007
-0007
-0007
-0008
-0008
-0009
-0009
-0010
.0011
.0011
.0012
-0013

Plot the gx series and display the legend. The series X is the conditional probability that
a person at age r will die between age & and the next age in the series

plot((0:100),

legend(series, "location”, "southeast™);

log(ax));

title("Conditional Probability of Dying within One Year of Current Age®);

xlabel ("Age™);

ylabel ("Log Probability”);
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Conditional Probability of Dying within One Year of Current Age
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See Also

lifetableconv | lifetablefit | lifetablegen

More About
. “About Life Tables” on page 2-47
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* “Analyzing Portfolios” on page 3-2

+  “Portfolio Optimization Functions” on page 3-4

+ “Portfolio Construction Examples” on page 3-7

+  “Portfolio Selection and Risk Aversion” on page 3-9

+  “portopt Migration to Portfolio Object” on page 3-14

+  “frontcon Migration to Portfolio Object” on page 3-25

+ “Constraint Specification Using a Portfolio Object” on page 3-34

+  “Active Returns and Tracking Error Efficient Frontier” on page 3-43
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Analyzing Portfolios

Portfolio managers concentrate their efforts on achieving the best possible trade-off
between risk and return. For portfolios constructed from a fixed set of assets, the risk/
return profile varies with the portfolio composition. Portfolios that maximize the return,
given the risk, or, conversely, minimize the risk for the given return, are called optimal.
Optimal portfolios define a line in the risk/return plane called the efficient frontier.

A portfolio may also have to meet additional requirements to be considered. Different
investors have different levels of risk tolerance. Selecting the adequate portfolio for a
particular investor is a difficult process. The portfolio manager can hedge the risk related
to a particular portfolio along the efficient frontier with partial investment in risk-free
assets. The definition of the capital allocation line, and finding where the final portfolio
falls on this line, if at all, is a function of:

* The risk/return profile of each asset

* The risk-free rate

* The borrowing rate

* The degree of risk aversion characterizing an investor

Financial Toolbox software includes a set of portfolio optimization functions designed to
find the portfolio that best meets investor requirements.

Warning frontcon has been removed. Use Portfolio instead.

portopt has been partially removed and will no longer accept ConSet or varargin
arguments. portopt will only solve the portfolio problem for long-only fully invested
portfolios. Use Portfolio instead.

See Also

abs2active | active2abs | frontier | pcalims | pcgcomp | pcglims | pcpval |
portalloc | portcons | Portfolio | portopt | portvrisk

Related Examples
. “Portfolio Optimization Functions” on page 3-4

. “Portfolio Construction Examples” on page 3-7
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. “Portfolio Selection and Risk Aversion” on page 3-9
. “Active Returns and Tracking Error Efficient Frontier” on page 3-43

. “Plotting an Efficient Frontier” on page 10-26

More About
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)
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Portfolio Optimization Functions

The portfolio optimization functions assist portfolio managers in constructing portfolios
that optimize risk and return.

Capital Allocation

Description

portalloc

Computes the optimal risky portfolio on the efficient frontier, based
on the risk-free rate, the borrowing rate, and the investor's degree
of risk aversion. Also generates the capital allocation line, which
provides the optimal allocation of funds between the risky portfolio
and the risk-free asset.

Efficient Frontier
Computation

Description

frontcon

Computes portfolios along the efficient frontier for a given group of
assets. The computation is based on sets of constraints representing
the maximum and minimum weights for each asset, and the
maximum and minimum total weight for specified groups of assets.

Warning frontcon has been removed. Use Portfolio instead.
For more information on migrating frontcon code to Portfolio,
see “frontcon Migration to Portfolio Object” on page 3-25.

frontier

Computes portfolios along the efficient frontier for a given group of
assets. Generates a surface of efficient frontiers showing how asset
allocation influences risk and return over time.

portopt

Computes portfolios along the efficient frontier for a given group of
assets. The computation is based on a set of user-specified linear
constraints. Typically, these constraints are generated using the
constraint specification functions described below.

Warning portopt has been partially removed and will no longer
accept ConSet or varargin arguments. portopt will only solve
the portfolio problem for long-only fully invested portfolios. Use
Portfolio instead. For more information on migrating portopt
code to Portfolio, see “portopt Migration to Portfolio Object” on
page 3-14.
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Constraint
Specification

Description

portcons Generates the portfolio constraints matrix for a portfolio of asset
investments using linear inequalities. The inequalities are of the
type A*Wts® <= b, where Wts is a row vector of weights.

portvrisk Portfolio value at risk (VaR) returns the maximum potential loss
in the value of a portfolio over one period of time, given the loss
probability level RiskThreshold.

pcalims Asset minimum and maximum allocation. Generates a constraint
set to fix the minimum and maximum weight for each individual
asset.

pcgcomp Group-to-group ratio constraint. Generates a constraint set
specifying the maximum and minimum ratios between pairs of
groups.

pcglims Asset group minimum and maximum allocation. Generates a
constraint set to fix the minimum and maximum total weight for
each defined group of assets.

pcpval Total portfolio value. Generates a constraint set to fix the total
value of the portfolio.

Constraint Description

Conversion

abs2active Transforms a constraint matrix expressed in absolute weight
format to an equivalent matrix expressed in active weight format.

active2abs Transforms a constraint matrix expressed in active weight format

to an equivalent matrix expressed in absolute weight format.

Note: An alternative to using these portfolio optimization functions is to use the Portfolio
object (Portfolio) for mean-variance portfolio optimization. This object supports gross
or net portfolio returns as the return proxy, the variance of portfolio returns as the risk
proxy, and a portfolio set that is any combination of the specified constraints to form a
portfolio set. For information on the workflow when using Portfolio objects, see “Portfolio
Object Workflow” on page 4-17.
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See Also

abs2active | active2abs | frontier | pcalims | pcgcomp | pcglims | pcpval |
portalloc | portcons | Portfolio | portopt | portvrisk

Related Examples

. “Portfolio Construction Examples” on page 3-7
. “Portfolio Selection and Risk Aversion” on page 3-9
. “Active Returns and Tracking Error Efficient Frontier” on page 3-43

. “Plotting an Efficient Frontier” on page 10-26
. “portopt Migration to Portfolio Object” on page 3-14
. “frontcon Migration to Portfolio Object” on page 3-25

More About

. “Analyzing Portfolios” on page 3-2
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)


http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html

Portfolio Construction Examples

Portfolio Construction Examples

In this section...

“Introduction” on page 3-7

“Efficient Frontier Example” on page 3-7

Introduction

The efficient frontier computation functions require information about each asset

in the portfolio. This data is entered into the function via two matrices: an expected
return vector and a covariance matrix. The expected return vector contains the average
expected return for each asset in the portfolio. The covariance matrix is a square matrix
representing the interrelationships between pairs of assets. This information can be
directly specified or can be estimated from an asset return time series with the function
ewstats.

Note: An alternative to using these portfolio optimization functions is to use the Portfolio
object (Portfol io) for mean-variance portfolio optimization. This object supports gross
or net portfolio returns as the return proxy, the variance of portfolio returns as the risk
proxy, and a portfolio set that is any combination of the specified constraints to form a
portfolio set. For information on the workflow when using Portfolio objects, see “Portfolio
Object Workflow” on page 4-17.

Efficient Frontier Example

frontcon has been removed. To model the efficient frontier, use the Portfolio object
instead. For example, using the Portfolio object, you can model an efficient frontier:
+ “Obtaining Portfolios Along the Entire Efficient Frontier” on page 4-87

*  “Obtaining Endpoints of the Efficient Frontier” on page 4-88

*  “Obtaining Efficient Portfolios for Target Returns” on page 4-90

*  “Obtaining Efficient Portfolios for Target Risks” on page 4-93

+  “Efficient Portfolio That Maximizes Sharpe Ratio” on page 4-95

+ “Estimate Efficient Frontiers for Portfolio Object” on page 4-99

+ “Plotting the Efficient Frontier for a Portfolio Object” on page 4-101
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See Also

abs2active | active2abs | frontier | pcalims | pcgcomp | pcglims | pcpval |
portalloc | portcons | Portfolio | portopt | portvrisk

Related Examples

. “Portfolio Optimization Functions” on page 3-4
. “Portfolio Selection and Risk Aversion” on page 3-9
. “Active Returns and Tracking Error Efficient Frontier” on page 3-43

. “Plotting an Efficient Frontier” on page 10-26
. “portopt Migration to Portfolio Object” on page 3-14
. “frontcon Migration to Portfolio Object” on page 3-25

More About

. “Analyzing Portfolios” on page 3-2
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)


http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html

Portfolio Selection and Risk Aversion

Portfolio Selection and Risk Aversion

In this section...

“Introduction” on page 3-9

“Optimal Risky Portfolio” on page 3-10

Introduction

One of the factors to consider when selecting the optimal portfolio for a particular
investor is degree of risk aversion. This level of aversion to risk can be characterized by
defining the investor's indifference curve. This curve consists of the family of risk/return
pairs defining the trade-off between the expected return and the risk. It establishes

the increment in return that a particular investor requires to make an increment in

risk worthwhile. Typical risk aversion coefficients range from 2.0 through 4.0, with the
higher number representing lesser tolerance to risk. The equation used to represent risk
aversion in Financial Toolbox software is

U = E(r) - 0.005*A*sigh2
where:

U is the utility value.

E(r) is the expected return.

A is the index of investor's aversion.

sig is the standard deviation.
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Note: An alternative to using these portfolio optimization functions is to use the Portfolio
object (Portfolio) for mean-variance portfolio optimization. This object supports gross
or net portfolio returns as the return proxy, the variance of portfolio returns as the risk
proxy, and a portfolio set that is any combination of the specified constraints to form a
portfolio set. For information on the workflow when using Portfolio objects, see “Portfolio
Object Workflow” on page 4-17.

Optimal Risky Portfolio

This example computes the optimal risky portfolio on the efficient frontier based on the
risk-free rate, the borrowing rate, and the investor's degree of risk aversion. You do this
with the function portalloc.

First generate the efficient frontier data using portopt.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [ 0.005 -0.010 0.004;
-0.010 0.040 -0.002;
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0.004 -0.002 0.023];

Consider 20 different points along the efficient frontier.
NumPorts = 20;

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ...
ExpCovariance, NumPorts);

Calling portopt, while specifying output arguments, returns the corresponding vectors
and arrays representing the risk, return, and weights for each of the portfolios along
the efficient frontier. Use these as the first three input arguments to the function
portalloc.

Now find the optimal risky portfolio and the optimal allocation of funds between the
risky portfolio and the risk-free asset, using these values for the risk-free rate, borrowing
rate, and investor's degree of risk aversion.

RisklessRate = 0.08
BorrowRate = 0.12
RiskAversion = 3

Calling portal loc without specifying any output arguments gives a graph displaying
the critical points.

portalloc (PortRisk, PortReturn, PortWts, RisklessRate,...
BorrowRate, RiskAversion);
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Calling portal loc while specifying the output arguments returns the variance
(RiskyRisk), the expected return (RiskyReturn), and the weights (RiskyWts) allocated
to the optimal risky portfolio. It also returns the fraction (RiskyFraction) of the
complete portfolio allocated to the risky portfolio, and the variance (Overal IRisk)

and expected return (Overal IReturn) of the optimal overall portfolio. The overall
portfolio combines investments in the risk-free asset and in the risky portfolio. The
actual proportion assigned to each of these two investments is determined by the degree

of risk aversion characterizing the investor.

[RiskyRisk, RiskyReturn, RiskyWts,RiskyFraction, OverallRisk,...

OverallReturn] = portalloc (PortRisk, PortReturn, PortWts,...
RisklessRate, BorrowRate, RiskAversion)

RiskyRisk = 0.1288

RiskyReturn = 0.1791

RiskyWts = 0.0057 0.5879 0.4064
RiskyFraction = 1.1869
OverallRisk = 0.1529
OverallReturn = 0.1902




Portfolio Selection and Risk Aversion

The value of RiskyFraction exceeds 1 (100%), implying that the risk tolerance
specified allows borrowing money to invest in the risky portfolio, and that no money

is invested in the risk-free asset. This borrowed capital is added to the original capital
available for investment. In this example, the customer tolerates borrowing 18.69% of the
original capital amount.

See Also

abs?active | active2abs | frontier | pcalims | pcgcomp | pcglims | pcpval |
portalloc | portcons | Portfolio | portopt | portvrisk

Related Examples

. “Portfolio Optimization Functions” on page 3-4

. “Portfolio Selection and Risk Aversion” on page 3-9

. “Active Returns and Tracking Error Efficient Frontier” on page 3-43
. “Plotting an Efficient Frontier” on page 10-26

. “portopt Migration to Portfolio Object” on page 3-14

. “frontcon Migration to Portfolio Object” on page 3-25

More About
. “Analyzing Portfolios” on page 3-2
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)
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In this section...

“Migrate portopt Without Output Arguments” on page 3-14
“Migrate portopt with Output Arguments” on page 3-16

“Migrate portopt for Target Returns Within Range of Efficient Portfolio Returns” on
page 3-18

“Migrate portopt for Target Return Outside Range of Efficient Portfolio Returns” on
page 3-19

“Migrate portopt Using portcons Output for ConSet” on page 3-20

“Integrate Output from portcons pcalims, pcglims, and pcgcomp with a Portfolio Object”
on page 3-22

Migrate portopt Without Output Arguments

This example shows how to migrate portopt without output arguments to a Portfolio
object.

The basic portopt functionality is represented as:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];
ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;

portopt(ExpReturn, ExpCovariance, NumPorts);
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To migrate a portopt syntax without output arguments to a Portfolio object:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;
Portfolio;

setAssetMoments(p, ExpReturn, ExpCovariance);
setDefaultConstraints(p);

p
p
p
plotFrontier(p, NumPorts);
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Without output arguments, portopt plots the efficient frontier. The Portfolio object has
similar behavior although the Portfolio object writes to the current figure window rather
than create a new window each time a plot is generated.

Migrate portopt with Output Arguments

This example shows how to migrate portopt with output arguments to a Portfolio
object.

With output arguments, the basic functionality of portopt returns portfolio moments
and weights. Once the Portfolio object is set up, moments and weights are obtained in
separate steps.

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;



portopt Migration to Portfolio Object

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;
0.0070, 0.0197, 0.0100, 0.0461, 0.0050;
0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];
NumPorts = 10;

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, NumPorts);

display(Portwts);
PortWts =
0.2103 0.2746 0.1157 0.1594 0.2400
0.1744 0.2657 0.1296 0.2193 0.2110
0.1386 0.2567 0.1436 0.2791 0.1821
0.1027 0.2477 0.1575 0.3390 0.1532
0.0668 0.2387 0.1714 0.3988 0.1242
0.0309 0.2298 0.1854 0.4587 0.0953
0 0.2168 0.1993 0.5209 0.0629
0 0.1791 0.2133 0.5985 0.0091
0 0.0557 0.2183 0.7260 0
0 0 0 1.0000 0

To migrate a portopt syntax with output arguments:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;
p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

display(PortWts);

PortWts =
0.2103 0.1744 0.1386 0.1027 0.0668 0.0309 0 0 0 0
0.2746 0.2657 0.2567 0.2477 0.2387 0.2298 0.2168 0.1791 0.0557 0
0.1157 0.1296 0.1436 0.1575 0.1714 0.1854 0.1993 0.2133 0.2183 0
0.1594 0.2193 0.2791 0.3390 0.3988 0.4587 0.5209 0.5985 0.7260 1.0000
0.2400 0.2110 0.1821 0.1532 0.1242 0.0953 0.0629 0.0091 0 0
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The Portfolio object returns PortWts with portfolios going down columns, not across
rows. Portfolio risks and returns are still in column format.

Migrate portopt for Target Returns Within Range of Efficient Portfolio
Returns

This example shows how to migrate portopt target returns within range of efficient
portfolio returns to a Portfolio object.

portopt can obtain portfolios with specific targeted levels of return but requires that the
targeted returns fall within the range of efficient returns. The Portfolio object handles
this by selecting portfolios at the ends of the efficient frontier.

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 1;

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;

0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 1;

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, [], TargetReturn);

disp(" Efficient Target®);
disp([PortReturn, TargetReturn]);

Efficient Target

0.0500 0.0500
0.0600 0.0600
0.0700 0.0700
0.0800 0.0800
0.0900 0.0900

To migrate a portopt syntax for target returns within range of efficient portfolio returns
to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;



portopt Migration to Portfolio Object

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];

p Portfolio;
p setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(® Efficient Target®);
disp([PortReturn, TargetReturn]);

Efficient Target
0.0500 0.0500
0.0600 0.0600
0.0700 0.0700
0.0800 0.0800
0.0900 0.0900

Migrate portopt for Target Return Outside Range of Efficient Portfolio
Returns

This example shows how to migrate portopt target returns outside of range of efficient
portfolio returns to a Portfolio object.

When the target return is outside of the range of efficient portfolio returns, portopt
generates an error. The Portfolio object handles this effectively by selecting portfolios at
the ends of the efficient frontier.

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;
TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, [], TargetReturn);

disp(" Efficient Target®);
disp([PortReturn, TargetReturn]);

> In portopt at 85

Error using portopt (line 297)
One or more requested returns are greater than the maximum achievable return of 0.093400.
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To migrate a portopt syntax for target returns outside of the range of efficient portfolio
returns to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;

0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 1;

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(" Efficient Target®);
disp([PortReturn, TargetReturn]);

Warning: One or more target return values are outside the feasible range [
0.0427391, 0.0934 ].
Will return portfolios associated with endpoints of the range for these
values.
> In Portfolio/estimateFrontierByReturn (line 106)
Efficient Target
0.0500 0.0500

0.0600 0.0600
0.0700 0.0700
0.0800 0.0800
0.0900 0.0900
0.0934 0.1000

Migrate portopt Using portcons Output for ConSet

This example shows how to migrate portopt when the ConSet output from portcons is
used with portopt.

portopt accepts as input the outputs from portcons, pcalims, pcglims, and
pcgcomp. This example focuses on portcons. portcons sets up linear constraints for
portopt in the form A*Port <= b. In a matrix ConSet = [ A, b ] and break into
separate A and b arrays with A = ConSet(:,1:end-1); andb = ConSet(:,end);.
In addition, to illustrate default problem with additional group constraints, consider
three groups. Assets 2, 3, and 4 can constitute up to 80% of portfolio, Assets 1 and 2
can constitute up to 70% of portfolio, and Assets 3, 4, and 5 can constitute up to 90% of
portfolio.

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];
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ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;

Groups = [01110;11000;0011117];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup
UpperGroup

GroupBounds(:,1);
GroupBounds(:,2);

ConSet = portcons(“default®, 5, “grouplims®, Groups, LowerGroup, UpperGroup);
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance, NumPorts, [], ConSet);

disp([PortRisk, PortReturn]);

Error using portopt (line 83)

In the current and future releases, portopt will no longer accept ConSet or varargin arguments.
“1t will only solve the portfolio problem for long-only fully-invested portfolios.

To solve more general problems, use the Portfolio object.

See the release notes for details, including examples to make the conversion.

To migrate portopt to a Portfolio object when the ConSet output from portcons is
used with portopt:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;

Groups = [01110;11000;001111];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup
UpperGroup

GroupBounds(:,1);
GroupBounds(:,2);

ConSet = portcons(“default®, 5, "grouplims®, Groups, LowerGroup, UpperGroup);

A = ConSet(:,l:end-1);

b = ConSet(:,end);

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setlnequality(p, A, b); % implement group constraints here

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288 0.0427
0.1292 0.0465
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0.1306 0.0503
0.1328 0.0540
0.1358 0.0578
0.1395 0.0615
0.1440 0.0653
0.1504 0.0690
0.1590 0.0728
0.1806 0.0766

The constraints are entered directly into the Portfolio object with the setlnequal ity or
addInequal ity functions.

Integrate Output from portcons pcalims, pcglims, and pcgcomp with a
Portfolio Object

This example shows how to integrate output from pcal ims, pcalims, pcglims, or
pcgcomp with a Portfolio object implementation.

portcons, pcalims, pcglims, and pcgcomp setup linear constraints for portopt in
the form A*Port <= b. Although some functions permit two outputs, assume that the
output is a single matrix ConSet. Break into separate A and b arrays with:

* A = ConSet(:,1l:end-1);

* b = ConSet(:,end);

In addition, to illustrate default problem with additional group constraints, consider
three groups:

+ Assets 2, 3, and 4 can constitute up to 80% of portfolio.

+ Assets 1 and 2 can constitute up to 70% of portfolio.

+ Assets 3, 4, and 5 can constitute up to 90% of portfolio.

Groups = [ 01110;11000;001111];

GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

To integrate the ConSet output of portcons with a Portfolio object implementation:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 1;

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;

0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;
0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];
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NumPorts = 10;

Groups = [01110;11000;0011117];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup
UpperGroup

GroupBounds(:,1);
GroupBounds(:,2);

ConSet = portcons(“default®, 5, “grouplims®, Groups, LowerGroup, UpperGroup);

A = ConSet(:,l:end-1);

b = ConSet(:,end);

p = Portfolio;

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p); % implement default constraints here
p = setlnequality(p, A, b); % implement group constraints here

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288 0.0427
0.1292 0.0465
0.1306 0.0503
0.1328 0.0540
0.1358 0.0578
0.1395 0.0615
0.1440 0.0653
0.1504 0.0690
0.1590 0.0728
0.1806 0.0766

To integrate the output of pcal ims and pcglims with a Portfolio object implementation:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 1;

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;

Groups = [01110;11000;0011117];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup
UpperGroup

GroupBounds(:,1);
GroupBounds(:,2);

AssetMin 0

0; 0]
AssetMax 0. 8;

0.8; 0.8; 0.8 ];

1nn
= r—

0; 0
; O.

8

[Aa, ba]
[Ag, bgl

pcalims(AssetMin, AssetMax);
pcglims(Groups, LowerGroup, UpperGroup);
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Portfolio;

p:

p = setAssetMoments(p, ExpReturn, ExpCovariance);

p = setDefaultConstraints(p); % implement default constraints first
p = addlnequality(p, Aa, ba); % implement bound constraints here

p = addlnequality(p, Ag, bg); % implement group constraints here

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288 0.0427
0.1292 0.0465
0.1306 0.0503
0.1328 0.0540
0.1358 0.0578
0.1395 0.0615
0.1440 0.0653
0.1504 0.0690
0.1590 0.0728
0.1806 0.0766
See Also

addlnequality | estimateFrontier | estimateFrontierByReturn |
estimatePortMoments | pcalims | pcgcomp | pcglims | portcons | Portfolio |
portopt | setAssetMoments | setDefaultConstraints | setlnequality

Related Examples
. “frontcon Migration to Portfolio Object” on page 3-25

More About
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)


http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html

frontcon Migration to Portfolio Object

frontcon Migration to Porifolio Object

In this section...

“Migrate frontcon Without Output Arguments” on page 3-25
“Migrate frontcon with Output Arguments” on page 3-26

“Migrate frontcon for Target Returns Within Range of Efficient Portfolio Returns” on
page 3-27

“Migrate frontcon for Target Returns Outside Range of Efficient Portfolio Returns” on
page 3-29

“Migrate frontcon Syntax When Using Bounds” on page 3-30

“Migrate frontcon Syntax When Using Groups” on page 3-31

Migrate frontcon Without Output Arguments

This example shows how to migrate frontcon without output arguments to a Portfolio
object.

The basic Frontcon functionality is represented as:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;
frontcon(ExpReturn, ExpCovariance, NumPorts);
Error using frontcon (line 89)

In a future release, frontcon will be removed. Use the Portfolio object instead.
See the release notes for details, including examples to make the conversion.

To migrate a Frontcon syntax without output arguments to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];
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NumPorts = 10;

Portfolio;
setAssetMoments(p, ExpReturn, ExpCovariance);
setDefaultConstraints(p);

p
p
p

plotFrontier(p, NumPorts);

.
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The Portfolio object writes to the current figure window rather than create a new window
each time a plot is generated.

Migrate frontcon with Output Arguments

This example shows how to migrate frontcon with output arguments to a Portfolio
object.

The basic Frontcon functionality is represented as:
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ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts);
display(Portwts);

Error using frontcon (line 89)

In a future release, frontcon will be removed. Use the Portfolio object instead.
See the release notes for details, including examples to make the conversion.
To migrate a portopt syntax with output arguments:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;

0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

display(Portwts);

PortWts =
0.2103 0.1744 0.1386 0.1027 0.0668 0.0309 0 0 0 0
0.2746 0.2657 0.2567 0.2477 0.2387 0.2298 0.2168 0.1791 0.0557 0
0.1157 0.1296 0.1436 0.1575 0.1714 0.1854 0.1993 0.2133 0.2183 0
0.1594 0.2193 0.2791 0.3390 0.3988 0.4587 0.5209 0.5985 0.7260 1.0000
0.2400 0.2110 0.1821 0.1532 0.1242 0.0953 0.0629 0.0091 0 0

The Portfolio object returns PortWts with portfolios going down columns, not across
rows. Portfolio risks and returns are still in column format.

Migrate frontcon for Target Returns Within Range of Efficient Porifolio
Returns

This example shows how to migrate frontcon target returns within range of efficient
portfolio returns to a Portfolio object.
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frontcon can obtain portfolios with specific targeted levels of return but requires
that the targeted returns fall within the range of efficient returns. The Portfolio object
handles this by selecting portfolios at the ends of the efficient frontier.

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;
TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, [], TargetReturn);

disp(" Efficient Target®);
disp([PortReturn, TargetReturn]);

Error using frontcon (line 89)
In a future release, frontcon will be removed. Use the Portfolio object instead.
See the release notes for details, including examples to make the conversion.

To migrate a Frontcon syntax for target returns within range of efficient portfolio
returns to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;
TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09 ];

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(" Efficient Target®);
disp([PortReturn, TargetReturn]);

Efficient Target
0.0500 0.0500
0.0600 0.0600
0.0700 0.0700
0.0800 0.0800
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0.0900 0.0900

Migrate frontcon for Target Returns Outside Range of Efficient Portfolio
Returns

This example shows how to migrate frontcon target returns outside of range of efficient
portfolio returns to a Portfolio object.

When the target return is outside of the range of efficient portfolio returns, frontcon
generates an error. The Portfolio object handles this effectively by selecting portfolios at
the ends of the efficient frontier.

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;
TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, [], TargetReturn);

disp(" Efficient Target®);
disp([PortReturn, TargetReturn]);

Error using frontcon (line 89)
In a future release, frontcon will be removed. Use the Portfolio object instead.
See the release notes for details, including examples to make the conversion.

To migrate a Frontcon syntax for target returns outside of the range of efficient
portfolio returns to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 1;

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;

0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 1;

NumPorts = 10;

TargetReturn = [ 0.05; 0.06; 0.07; 0.08; 0.09; 0.10 ];

p = Portfolio;
p = setAssetMoments(p, ExpReturn, ExpCovariance);
p = setDefaultConstraints(p);

PortWts = estimateFrontierByReturn(p, TargetReturn);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp(" Efficient Target®);
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disp([PortReturn, TargetReturn]);

Warning: One or more target return values are outside the feasible range [
0.0427391, 0.0934 ].
Will return portfolios associated with endpoints of the range for these
values.
> In Portfolio/estimateFrontierByReturn (line 106)
Efficient Target
0.0500 0.0500

0.0600 0.0600
0.0700 0.0700
0.0800 0.0800
0.0900 0.0900
0.0934 0.1000

Migrate frontcon Syntax When Using Bounds

This example shows how to migrate frontcon syntax for AssetBounds to a Portfolio
object.

Use frontcon with an input specification for AssetBounds that contains the lower and
upper bounds on the weight allocated to each asset in the portfolio:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];
ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;
0.0039, 0.0035, 0.0997, 0.0100, 0.0070;
0.0070, 0.0197, 0.0100, 0.0461, 0.0050;
0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];
NumPorts = 10;
AssetBounds = [ 0.1, 0.1, 0.1, 0.1, 0.1; 0.5, 0.5, 0.5, 0.5, 0.5 ];
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn, ExpCovariance, NumPorts, [], AssetBounds);
disp([PortRisk, PortReturn]);
Error using frontcon (line 89)

In a future release, frontcon will be removed. Use the Portfolio object instead.
See the release notes for details, including examples to make the conversion.

To migrate a Frontcon syntax using AssetBounds to a Portfolio object:

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;
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AssetBounds = [ 0.1, 0.1, 0.1, 0.1, 0.1; 0.5, 0.5, 0.5, 0.5, 0.5 ];

LowerBound
UpperBound

= AssetBounds(1,:);

= AssetBounds(2,:);

Portfolio;

setAssetMoments(p, ExpReturn, ExpCovariance);
setDefaultConstraints(p);

setBounds(p, LowerBound, UpperBound);

T T TTOT
nom

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288 0.0427
0.1291 0.0457
0.1299 0.0487
0.1313 0.0516
0.1332 0.0546
0.1356 0.0576
0.1385 0.0605
0.1419 0.0635
0.1461 0.0665
0.1519 0.0694

Migrate frontcon Syntax When Using Groups

This example shows how to migrate frontcon syntax for Groups and GroupBounds to a
Portfolio object.

Use frontcon with an input specification for Groups (asset groups or classes.) and
GroupBounds (the lower and upper bounds of the total weights of all assets in a group).
Consider three groups: Assets 2, 3, and 4 can constitute up to 80% of a portfolio, Assets 1
and 2 can constitute up to 70% of a portfolio, and Assets 3, 4, and 5 can constitute up to

90% of a portfolio.

ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];
ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;
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Groups = [01110;11000;0011117];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

[PortRisk, PortReturn, PortWgts] = frontcon(ExpReturn, ExpCovariance, NumPorts, [1, [1, ---
Groups, GroupBounds);

disp([PortRisk, PortReturn]);

Error using frontcon (line 89)
In a future release, frontcon will be removed. Use the Portfolio object instead.
See the release notes for details, including examples to make the conversion.

To migrate a frontcon syntax using Groups and GroupBounds to a Portfolio object:
ExpReturn = [ 0.0054; 0.0531; 0.0779; 0.0934; 0.0130 ];

ExpCovariance = [ 0.0569, 0.0092, 0.0039, 0.0070, 0.0022;
0.0092, 0.0380, 0.0035, 0.0197, 0.0028;

0.0039, 0.0035, 0.0997, 0.0100, 0.0070;

0.0070, 0.0197, 0.0100, 0.0461, 0.0050;

0.0022, 0.0028, 0.0070, 0.0050, 0.0573 ];

NumPorts = 10;

Groups = [01110;11000;00111T7];
GroupBounds = [ 0, 0.8; 0, 0.7; 0, 0.9 ];

LowerGroup
UpperGroup

= GroupBounds(:,1);

= GroupBounds(:,2);

Portfolio;

setAssetMoments(p, ExpReturn, ExpCovariance);
setDefaultConstraints(p);

setGroups(p, Groups, LowerGroup, UpperGroup);

p
p
p

p

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

disp([PortRisk, PortReturn]);

0.1288 0.0427
0.1292 0.0465
0.1306 0.0503
0.1328 0.0540
0.1358 0.0578
0.1395 0.0615
0.1440 0.0653
0.1504 0.0690
0.1590 0.0728
0.1806 0.0766

See Also

addlnequality | estimateFrontier | estimateFrontierByReturn |
estimatePortMoments | pcalims | pcgcomp | pcglims | portcons | Portfolio |
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portopt | setAssetMoments | setBounds | setDefaultConstraints | setGroups
| setlnequality

Related Examples
. “portopt Migration to Portfolio Object” on page 3-14

More About
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)
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3 Portfolio Anclysis

Constraint Specification Using a Porifolio Object

3-34

In this section...

“Constraints for Efficient Frontier” on page 3-34
“Linear Constraint Equations” on page 3-36

“Specifying Group Constraints” on page 3-39

Constraints for Efficient Frontier

This example computes the efficient frontier of portfolios consisting of three different
assets, INTC, XON, and RD, given a list of constraints. The expected returns for INTC,
XON, and RD are respectively as follows:

ExpReturn = [0.1 0.2 0.15];

The covariance matrix is

ExpCovariance = [ 0.005 -0.010 0.004;
-0.010 0.040 -0.002;
0.004 -0.002 0.023];

* Constraint 1

+ Allow short selling up to 10% of the portfolio value in any asset, but limit the
investment in any one asset to 110% of the portfolio value.

* Constraint 2

Consider two different sectors, technology and energy, with the following table
indicating the sector each asset belongs to.

Asset INTC XON RD
Sector Technology Energy Energy

Constrain the investment in the Energy sector to 80% of the portfolio value, and
the investment in the Technology sector to 70%.

To solve this problem, use Portfolio, passing in a list of asset constraints.
Consider eight different portfolios along the efficient frontier:

NumPorts = 8;



Constraint Specification Using a Portfolio Object

To introduce the asset bounds constraints specified in Constraint 1, create the
matrix AssetBounds, where each column represents an asset. The upper row
represents the lower bounds, and the lower row represents the upper bounds.
Since the bounds are the same for each asset, only one pair of bounds is needed
because of scalar expansion.

AssetBounds = [-0.1, 1.1];

Constraint 2 must be entered in two parts, the first part defining the groups, and
the second part defining the constraints for each group. Given the information
above, you can build a matrix of 1s and Os indicating whether a specific asset
belongs to a group. Each column represents an asset, and each row represents a
group. This example has two groups: the technology group, and the energy group.
Create the matrix Groups as follows.

Groups = [O 1 1;
1 0 0];

The GroupBounds matrix allows you to specify an upper and lower bound for each
group. Each row in this matrix represents a group. The first column represents the
minimum allocation, and the second column represents the maximum allocation
to each group. Since the investment in the Energy sector is capped at 80% of the
portfolio value, and the investment in the Technology sector is capped at 70%,
create the GroupBounds matrix using this information.

GroupBounds = [0 0.80;
0 0.701;

Now use Portfolio to obtain the vectors and arrays representing the risk,
return, and weights for each of the eight portfolios computed along the efficient
frontier. A budget constraint is added to ensure that the portfolio weights sum to
1.

Portfolio("AssetMean®, ExpReturn, “AssetCovar®, ExpCovariance);
setBounds(p, AssetBounds(l), AssetBounds(2));

setBudget(p, 1, 1);

setGroups(p, Groups, GroupBounds(:,1), GroupBounds(:,2));

T TDTDT

PortWts = estimateFrontier(p, NumPorts);
[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);
PortRisk

PortReturn
PortWts
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PortRisk =

.0416
-0499
.0624
.0767
-0920
-1100
-1378
-1716

cNeoNoNoNoNeoNoNe]

PortReturn =

-1279
-1361
-1442
-1524
-1605
-1687
-1768
-1850

cNeoNoNoNoNeoNoNe]

PortWts =

0.7000 0.6031 0.4864 0.3696 0.2529 0.2000 0.2000 0.2000
0.2582 0.3244 0.3708 0.4172 0.4636 0.5738 0.7369 0.9000
0.0418 0.0725 0.1428 0.2132 0.2835 0.2262 0.0631 -0.1000

The outputs are represented as columns for the portfolio’s risk and return.
Portfolio weights are identified as corresponding column vectors in a matrix.

Linear Constraint Equations

While the Portfolio object allows you to enter a fixed set of constraints related

to minimum and maximum values for groups and individual assets, you often need
to specify a larger and more general set of constraints when finding the optimal
risky portfolio. Portfolio also addresses this need, by accepting an arbitrary set of
constraints.
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This example requires specifying the minimum and maximum investment in various
groups.

Maximum and Minimum Group Exposure

Group Minimum Exposure Maximum Exposure
North America 0.30 0.75
Europe 0.10 0.55
Latin America 0.20 0.50
Asia 0.50 0.50

The minimum and maximum exposure in Asia is the same. This means that you require
a fixed exposure for this group.

Also assume that the portfolio consists of three different funds. The correspondence
between funds and groups is shown in the table below.

Group Membership

Group Fund 1 Fund 2 Fund 3
North America X X

Europe X
Latin America X

Asia X X

Using the information in these two tables, build a mathematical representation of the
constraints represented. Assume that the vector of weights representing the exposure of
each asset in a portfolio is called Wts = [W1 W2 W3].

Specifically

1. W1+ W2 > 0.30
2. W1+ W2 < 0.75
3. W3 > 0.10
4. W3 < 0.55
5. w1 > 0.20
6. 741 < 0.50
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7. \Wz + W3 = |o.50

Since you must represent the information in the form A*Wts <= b, multiply equations 1,
3 and 5 by —1. Also turn equation 7 into a set of two inequalities: W2 + W3 > 0.50 and W2
+ W3 < 0.50. (The intersection of these two inequalities is the equality itself.) Thus

1. -W1 - W2 < -0.30
2. W1+ W2 < 0.75
3. -W3 < -0.10
4. w3 < 0.55
5. -W1 < -0.20
6. w1 < 0.50
7. -W2 - W3 < -0.50
8. W2+ W3 < 0.50

Bringing these equations into matrix notation gives

A=[-1 -1 0;
1 1 0;
0 0 -1;
0 0 1;
-1 0 0;
1 0 0;
0 -1 -1;
0 1 1]
b = [-0.30;
0.75;
-0.10;
0.55;
-0.20;
0.50;
-0.50;
0.50]
One approach to solving this portfolio problem is to explicitly use the setlnequality
function:
p Portfolio("AssetMean®, ExpReturn, “AssetCovar®, ExpCovariance);

p = setBounds(p, AssetBounds(l), AssetBounds(2));
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p = setBudget(p, 1, 1);

p = setlnequality(p, A, b);

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

PortRisk
PortReturn
PortwWts

PortRisk =

.0586
0586
.0586
.0586
0586
.0586
.0586
.0586

[eNeloNolooNoNa]

PortReturn =

.1375
1375
.1375
.1375
1375
.1375
.1375
.1375

[eNeoloNoleooNoNa]

PortWts =

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

In this case, the constraints allow only one optimum portfolio. Since eight portfolios
were requested, all eight portfolios are the same. Note that the solution to this portfolio
problem using the setlnequal ity function is the same as using the setGroups
function in the next example (“Specifying Group Constraints” on page 3-39).

Specifying Group Constraints

The example above (“Linear Constraint Equations” on page 3-36) defines a constraint
matrix that specifies a set of typical scenarios. It defines groups of assets, specifies
upper and lower bounds for total allocation in each of these groups, and it sets the total
allocation of one group to a fixed value. Constraints like these are common occurrences.
Portfolio enables you to simplify the creation of the constraint matrix for these and
other common portfolio requirements.
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3-40

An alternative approach for solving the portfolio problem is to use the Portfol io object
to define:

* A Group matrix, indicating the assets that belong to each group.

* A GroupMin vector, indicating the minimum bounds for each group.

* A GroupMax vector, indicating the maximum bounds for each group.

Based on the table Group Membership, build the Group matrix, with each row
representing a group, and each column representing an asset.

Group = [1 1 0;
0 0 1;
1 0 0;
0] 1 1];

The table Maximum and Minimum Group Exposure has the information to build
GroupMin and GroupMax.

GroupMin
GroupMax

[0.30 0.10 0.20 0.50];
[0.75 0.55 0.50 0.50];

Now use Portfolio and the setlnequal ity function to obtain the vectors and arrays
representing the risk, return, and weights for the portfolios computed along the efficient
frontier.

Portfolio("AssetMean”, ExpReturn, "AssetCovar®, ExpCovariance);
setBounds(p, AssetBounds(l), AssetBounds(2));

setBudget(p, 1, 1);

setGroups(p, Group, GroupMin, GroupMax);

PortWts = estimateFrontier(p, NumPorts);

[PortRisk, PortReturn] = estimatePortMoments(p, PortWts);

T T TTOT
I

PortRisk
PortReturn
PortWts

PortRisk =

.0586
.0586
.0586
.0586
.0586
.0586
.0586
.0586

OO0 O0OO0OO0O0OO0O0
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PortReturn =

.1375
.1375
.1375
.1375
.1375
.1375
.1375
.1375

[ejoNeoleoloNoNoNal

PortWts =
0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

In this case, the constraints allow only one optimum portfolio. Since eight portfolios
were requested, all eight portfolios are the same. Note that the solution to this portfolio
problem using the setGroups function is the same as using the setlnequality
function in the previous example (“Linear Constraint Equations” on page 3-36).

See Also

estimateFrontier | estimatePortMoments | Portfolio | setGroups |
setlnequality

Related Examples

. “Setting Default Constraints for Portfolio Weights Using Portfolio Object” on page
4-57

. “Working with Bound Constraints Using Portfolio Object” on page 4-60

. “Working with Budget Constraints Using Portfolio Object” on page 4-62

. “Working with Group Constraints Using Portfolio Object” on page 4-64

. “Working with Group Ratio Constraints Using Portfolio Object” on page 4-67

. “Working with Linear Equality Constraints Using Portfolio Object” on page 4-69
. “Working with Linear Inequality Constraints Using Portfolio Object” on page

4-71

. “Working with Average Turnover Constraints Using Portfolio Object” on page
4-73

. “Working with One-way Turnover Constraints Using Portfolio Object” on page
4-75
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. “Working with Tracking Error Constraints Using Portfolio Object” on page 4-78
. “Asset Allocation Case Study” on page 4-142
. “Portfolio Optimization Examples” on page 4-114

More About

. “Portfolio Set for Optimization Using Portfolio Object” on page 4-7
. “Portfolio Object Workflow” on page 4-17
. “Setting Up a Tracking Portfolio” on page 4-37

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)
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Active Returns and Tracking Error Efficient Frontier

Active Returns and Tracking Error Efficient Frontier

Suppose that you want to identify an efficient set of portfolios that minimize the variance
of the difference in returns with respect to a given target portfolio, subject to a given
expected excess return. The mean and standard deviation of this excess return are often
called the active return and active risk, respectively. Active risk is sometimes referred

to as the tracking error. Since the objective is to track a given target portfolio as closely
as possible, the resulting set of portfolios is sometimes referred to as the tracking error
efficient frontier.

Specifically, assume that the target portfolio is expressed as an index weight vector, such
that the index return series may be expressed as a linear combination of the available
assets. This example illustrates how to construct a frontier that minimizes the active
risk (tracking error) subject to attaining a given level of return. That is, it computes the
tracking error efficient frontier.

One way to construct the tracking error efficient frontier is to explicitly form the target
return series and subtract it from the return series of the individual assets. In this
manner, you specify the expected mean and covariance of the active returns, and
compute the efficient frontier subject to the usual portfolio constraints.

This example works directly with the mean and covariance of the absolute (unadjusted)
returns but converts the constraints from the usual absolute weight format to active
weight format.

Consider a portfolio of five assets with the following expected returns, standard
deviations, and correlation matrix based on absolute weekly asset returns.

NumAssets = 5;

ExpReturn = [0.2074 0.1971 0.2669 0.1323 0.2535]/100;

Sigmas = [2.6570 3.6297 3.9916 2.7145 2.6133]/100;

Correlations = [1.0000 0.6092 0.6321 0.5833 0.7304
0.6092 1.0000 0.8504 0.8038 0.7176
0.6321 0.8504 1.0000 0.7723 0.7236
0.5833 0.8038 0.7723 1.0000 0.7225
0.7304 0.7176 0.7236 0.7225 1.0000];

Convert the correlations and standard deviations to a covariance matrix using
corr2cov.
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ExpCovariance = corr2cov(Sigmas, Correlations);

Next, assume that the target index portfolio is an equally weighted portfolio formed
from the five assets. The sum of index weights equals 1, satisfying the standard full
investment budget equality constraint.

Index = ones(NumAssets, 1)/NumAssets;

Generate an asset constraint matrix using portcons. The constraint matrix AbsConSet
is expressed in absolute format (unadjusted for the index), and is formatted as [A b],
corresponding to constraints of the form A*w <= b. Each row of AbsConSet corresponds
to a constraint, and each column corresponds to an asset. Allow no short-selling and

full investment in each asset (lower and upper bounds of each asset are 0 and 1,
respectively). In particular, note that the first two rows correspond to the budget equality
constraint; the remaining rows correspond to the upper/lower investment bounds.

AbsConSet = portcons("PortValue®, 1, NumAssets,
"AssetLims”, zeros(NumAssets,1l), ones(NumAssets,1));

Now transform the absolute constraints to active constraints with abs2active.
ActiveConSet = abs2active(AbsConSet, Index);

An examination of the absolute and active constraint matrices reveals that they differ
only in the last column (the columns corresponding to the b in A*w <= b).

[AbsConSet(:,end) ActiveConSet(:,end)]

ans =
1.0000 0
-1.0000 0
1.0000 0.8000
1.0000 0.8000
1.0000 0.8000
1.0000 0.8000
1.0000 0.8000
0 0.2000
0 0.2000
0 0.2000
0 0.2000
0 0.2000

In particular, note that the sum-to-one absolute budget constraint becomes a sum-to-zero
active budget constraint. The general transformation is as follows:
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b =b —AxIndex.

active absolute

Now construct the Portfol io object and plot the tracking error efficient frontier with 21
portfolios.

p = Portfolio("AssetMean®, ExpReturn, “AssetCovar®, ExpCovariance);
p = p-setlnequality(ActiveConSet(:,1:end-1), ActiveConSet(:,end));
[ActiveRisk, ActiveReturn] = p.plotFrontier(21);

plot(ActiveRisk*100, ActiveReturn*100, “blue®)
grid(“on®)

xlabel ("Active Risk (Standard Deviation in Percent)")
ylabel ("Active Return (Percent)®)

title("Tracking Error Efficient Frontier™)
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Of particular interest is the lower-left portfolio along the frontier. This zero-risk/zero-
return portfolio has a practical economic significance. It represents a full investment in
the index portfolio itself. Each tracking error efficient portfolio (each row in the array
ActiveWeights) satisfies the active budget constraint, and thus represents portfolio
investment allocations with respect to the index portfolio. To convert these allocations to
absolute investment allocations, add the index to each efficient portfolio.
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ActiveWeights = p.estimateFrontier(21);
AbsoluteWeights = ActiveWeights + repmat(lndex, 1, 21);

See Also

abs2active | active2abs | estimateFrontier | frontier | pcalims | pcgcomp
| pcglims | pcpval | plotFrontier | portalloc | portcons | Portfolio |
portvrisk | setlnequality

Related Examples
. “Portfolio Optimization Functions” on page 3-4
. “Portfolio Selection and Risk Aversion” on page 3-9

. “Plotting an Efficient Frontier” on page 10-26

More About
. “Analyzing Portfolios” on page 3-2
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)


http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html

Mean-Variance Porifolio Optimization
Tools

* “Portfolio Optimization Theory” on page 4-2

+  “Portfolio Object Workflow” on page 4-17

+ “Portfolio Object” on page 4-19

* “Creating the Portfolio Object” on page 4-24

* “Common Operations on the Portfolio Object” on page 4-32

+ “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page
4-41

* “Working with Portfolio Constraints” on page 4-57

+ “Validate the Portfolio Problem for Portfolio Object” on page 4-82
+ “Estimate Efficient Portfolios for Portfolio Object” on page 4-87

+ “Estimate Efficient Frontiers for Portfolio Object” on page 4-99

+  “Postprocessing Results” on page 4-107

+ “Portfolio Optimization Examples” on page 4-114

+ “Asset Allocation Case Study” on page 4-142

*  “Portfolio Optimization Against a Benchmark” on page 4-157
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Portfolio Optimization Theory
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In this section...

“Portfolio Optimization Problems” on page 4-2

“Portfolio Problem Specification” on page 4-2

“Return Proxy” on page 4-3

“Risk Proxy” on page 4-5

“Portfolio Set for Optimization Using Portfolio Object” on page 4-7

“Default Portfolio Problem” on page 4-15

Portfolio Optimization Problems
Portfolio optimization problems involve identifying portfolios that satisfy three criteria:

*  Minimize a proxy for risk.
*  Match or exceed a proxy for return.

+ Satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset universe.
A portfolio specifies either holdings or weights in each individual asset in the asset
universe. The convention is to specify portfolios in terms of weights, although the
portfolio optimization tools work with holdings as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded set. The
proxy for risk is a function that characterizes either the variability or losses associated
with portfolio choices. The proxy for return is a function that characterizes either

the gross or net benefits associated with portfolio choices. The terms “risk” and “risk
proxy” and “return” and “return proxy” are interchangeable. The fundamental insight
of Markowitz (see “Portfolio Optimization” on page A-10) is that the goal of the

portfolio choice problem is to seek minimum risk for a given level of return and to seek
maximum return for a given level of risk. Portfolios satisfying these criteria are efficient
portfolios and the graph of the risks and returns of these portfolios forms a curve called
the efficient frontier.

Portfolio Problem Specification

To specify a portfolio optimization problem, you need the following:
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Proxy for portfolio return (z)

Proxy for portfolio risk (X)
Set of feasible portfolios (X), called a portfolio set

Financial Toolbox has three objects to solve specific types of portfolio optimization
problems:

The Portfolio object (Using Portfolio Objects) supports mean-variance portfolio
optimization (see Markowitz [46], [47] at “Portfolio Optimization” on page A-10).

This object has either gross or net portfolio returns as the return proxy, the variance
of portfolio returns as the risk proxy, and a portfolio set that is any combination of the
specified constraints to form a portfolio set.

The PortfolioCVaR object (Using PortfolioCVaR Objects) implements what is known
as conditional value-at-risk portfolio optimization (see Rockafellar and Uryasev [48],
[49] at “Portfolio Optimization” on page A-10), which is generally referred to as

CVaR portfolio optimization. CVaR portfolio optimization works with the same return
proxies and portfolio sets as mean-variance portfolio optimization but uses conditional
value-at-risk of portfolio returns as the risk proxy.

The PortfolioMAD object (Using PortfolioMAD Objects) implements what is known
as mean-absolute deviation portfolio optimization (see Konno and Yamazaki [50] at
“Portfolio Optimization” on page A-10), which is generally referred to as MAD
portfolio optimization. MAD portfolio optimization works with the same return
proxies and portfolio sets as mean-variance portfolio optimization but uses mean-
absolute deviation portfolio returns as the risk proxy.

Return Proxy

The proxy for portfolio return is a function H: X — R on a portfolio set X = R" that
characterizes the rewards associated with portfolio choices. In most cases, the proxy for
portfolio return has two general forms, gross and net portfolio returns. Both portfolio

return forms separate the risk-free rate ry so that the portfolio x € X contains only risky
assets.

Regardless of the underlying distribution of asset returns, a collection of S asset returns
Y1,...,ys has a mean of asset returns

1 S
m _ggy,sw
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and (sample) covariance of asset returns
1 S T
C =ﬁ2(ys —m)ys—m)”.
T s=1

These moments (or alternative estimators that characterize these moments) are used
directly in mean-variance portfolio optimization to form proxies for portfolio risk and
return.

Gross Portfolio Returns

The gross portfolio return for a portfolio xe X 1is
wx)=ry +(m—r, T x,

where:

ro 1s the risk-free rate (scalar).

m 1s the mean of asset returns (n vector).

If the portfolio weights sum to 1, the risk-free rate is irrelevant. The properties in the
Portfolio object to specify gross portfolio returns are:

+ RiskFreeRate for r,
+ AssetMean for m

Net Porifolio Returns

The net portfolio return for a portfolio xe X is
ulx)=ry +(m-r, l)Tx— »T max{0,x —x} —sT max{0,xy —x},

where:
ro 1s the risk-free rate (scalar).

m 1is the mean of asset returns (n vector).
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b 1s the proportional cost to purchase assets (n vector).
s is the proportional cost to sell assets (n vector).

You can incorporate fixed transaction costs in this model also. Though in this case, it is
necessary to incorporate prices into such costs. The properties in the Portfolio object to
specify net portfolio returns are:

+ RiskFreeRate for ry
+ AssetMean for m

* InitPort for x,

* BuyCost for b

+ SellCost for s

Risk Proxy

The proxy for portfolio risk is a function Y. : X — R on a portfolio set X < R" that
characterizes the risks associated with portfolio choices.

Variance

The variance of portfolio returns for a portfolio xe X is

Y(x)=xTCx
where C is the covariance of asset returns (n-by-n positive-semidefinite matrix).

The property in the Portfolio object to specify the variance of portfolio returns is
AssetCovar for C.

Although the risk proxy in mean-variance portfolio optimization is the variance of
portfolio returns, the square root, which is the standard deviation of portfolio returns,
is often reported and displayed. Moreover, this quantity is often called the “risk” of the
portfolio. For details, see Markowitz (“Portfolio Optimization” on page A-10).

Conditional Value-at-Risk

The conditional value-at-risk for a portfolio x € X , which is also known as expected
shortfall, is defined as
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1
CVaR, (x) = o f f(x,y) p(y)dy,
T r(x,9)2VaR, (x)

where:

a is the probability level such that 0 <a < 1.

f(x,y) is the loss function for a portfolio x and asset return y.
p(y) is the probability density function for asset return y.
VaR, is the value-at-risk of portfolio x at probability level a.

The value-at-risk is defined as
VaR, (x) =min{y : Pr[f(x,Y) < y]2 a}.
An alternative formulation for CVaR has the form:

1
l-o

CVaR,(x)=VaR, (x)+ I max{0,(f(x,y) - VaRy, (x))} p(y)dy

Rn

The choice for the probability level a is typically 0.9 or 0.95. Choosing a implies that

the value-at-risk VaR,(x) for portfolio x is the portfolio return such that the probability
of portfolio returns falling below this level is (1 —a). Given VaR,(x) for a portfolio x, the
conditional value-at-risk of the portfolio is the expected loss of portfolio returns above the
value-at-risk return.

Note: Value-at-risk is a positive value for losses so that the probability level a indicates
the probability that portfolio returns are below the negative of the value-at-risk.

The risk proxy for CVaR portfolio optimization is CVaR,(x) for a given portfolio x € X

and o €(0,1) . The value-at-risk, or VaR, for a given probability level is estimated
whenever CVaR is estimated.
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In addition, keep in mind that VaR and CVaR are sample estimators for VaR and CVaR
based on the given scenarios. Better scenario samples yield more reliable estimates of
VaR and CVaR.

For more information, see Rockafellar and Uryasev [48], [49] at “Portfolio Optimization”
on page A-10.

Mean Absolute-Deviation

The mean-absolute-deviation (MAD) for a portfolio x € X is defined as

Y (%) =%§{‘(ys —m)Tx‘

where:

ys are asset returns with scenarios s = 1,...S (S collection of n vectors).
f(x,y) 1s the loss function for a portfolio x and asset return y.

m 1is the mean of asset returns (n vector).

such that
S
1
m== 2 ¥s
S s=1

For more information, see Konno and Yamazaki [50] at “Portfolio Optimization” on page
A-10.

Portfolio Set for Optimization Using Portfolio Object

The final element for a complete specification of a portfolio optimization problem is

the set of feasible portfolios, which is called a portfolio set. A portfolio set X < R" is
specified by construction as the intersection of sets formed by a collection of constraints
on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty,
closed, and bounded set.

4-7
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When setting up your portfolio set, ensure that the portfolio set satisfies these conditions.
The most basic or “default” portfolio set requires portfolio weights to be nonnegative
(using the lower-bound constraint) and to sum to 1 (using the budget constraint). The
most general portfolio set handled by the portfolio optimization tools can have any of
these constraints:

* Linear inequality constraints

* Linear equality constraints

*  Bound constraints

* Budget constraints

*  Group constraints

* Group ratio constraints

+ Average turnover constraints

*  One-way turnover constraints

* Tracking error constraints
Linear Inequality Constraints
Linear inequality constraints are general linear constraints that model relationships

among portfolio weights that satisfy a system of inequalities. Linear inequality
constraints take the form

where:

x is the portfolio (n vector).

Aris the linear inequality constraint matrix (n;-by-n matrix).

bris the linear inequality constraint vector (n; vector).

n is the number of assets in the universe and n;is the number of constraints.

Portfolio object properties to specify linear inequality constraints are:

+ Alnequality for 4;
* blnequality for b;
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* NumAssets for n
The default is to ignore these constraints.
Linear Equality Constraints

Linear equality constraints are general linear constraints that model relationships among
portfolio weights that satisfy a system of equalities. Linear equality constraints take the
form

AEx = bE

where:

x is the portfolio (n vector).

Ap 1s the linear equality constraint matrix (ng-by-n matrix).

b 1s the linear equality constraint vector (ng vector).

n is the number of assets in the universe and ng is the number of constraints.
Portfolio object properties to specify linear equality constraints are:

* AEquality for Ag
* bEquality for by

+ NumAssets for n

The default is to ignore these constraints.
Bound Constraints

Bound constraints are specialized linear constraints that confine portfolio weights to fall
either above or below specific bounds. Since every portfolio set must be bounded, it is
often a good practice, albeit not necessary, to set explicit bounds for the portfolio problem.
To obtain explicit bounds for a given portfolio set, use the estimateBounds function.
Bound constraints take the form
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x is the portfolio (n vector).

I 1s the lower-bound constraint (n vector).

up is the upper-bound constraint (n vector).

n is the number of assets in the universe.

Portfolio object properties to specify bound constraints are:

* LowerBound for Iz
* UpperBound for ug

* NumAssets for n
The default is to ignore these constraints.

The default portfolio optimization problem (see “Default Portfolio Problem” on page
4-15) has Ig = 0 with up set implicitly through a budget constraint.

Budget Constraints

Budget constraints are specialized linear constraints that confine the sum of portfolio
weights to fall either above or below specific bounds. The constraints take the form

lg SlTxSuS

where:

x 1s the portfolio (n vector).

1 is the vector of ones (n vector).

lg1s the lower-bound budget constraint (scalar).

ug 1s the upper-bound budget constraint (scalar).

n is the number of assets in the universe.

Portfolio object properties to specify budget constraints are:

* LowerBudget for Ig
+ UpperBudget for ug
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* NumAssets for n
The default is to ignore this constraint.

The default portfolio optimization problem (see “Default Portfolio Problem” on page
4-15) has Ig = ug =1, which means that the portfolio weights sum to 1. If the portfolio
optimization problem includes possible movements in and out of cash, the budget
constraint specifies how far portfolios can go into cash. For example, if [g=0 and ug=1,
then the portfolio can have 0—100% invested in cash. If cash is to be a portfolio choice,
set RiskFreeRate (ry) to a suitable value (see “Return Proxy” on page 4-3 and
“Working with a Riskless Asset” on page 4-51).

Group Constraints

Group constraints are specialized linear constraints that enforce “membership” among
groups of assets. The constraints take the form

ZG SGXSUG

where:

x 1s the portfolio (n vector).

lg 1s the lower-bound group constraint (ng vector).

ug 1s the upper-bound group constraint (ng vector).

G is the matrix of group membership indexes (ng-by-n matrix).

Each row of G identifies which assets belong to a group associated with that row. Each
row contains either Os or 1s with 1 indicating that an asset is part of the group or O
indicating that the asset is not part of the group.

Portfolio object properties to specify group constraints are:

+ GroupMatrix for G
* LowerGroup for /g
* UpperGroup for ug
* NumAssets for n

The default is to ignore these constraints.

4-11
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Group Ratio Constraints

Group ratio constraints are specialized linear constraints that enforce relationships
among groups of assets. The constraints take the form

lRi(GBx)i < (GAx)i < uRi(GBx)i

for i =1,..., ngr where:

x 1s the portfolio (n vector).

lg is the vector of lower-bound group ratio constraints (ng vector).

ug 1s the vector matrix of upper-bound group ratio constraints (ng vector).

G4 1s the matrix of base group membership indexes (ng-by-n matrix).

Gp is the matrix of comparison group membership indexes (nz-by-n matrix).
n is the number of assets in the universe and ng is the number of constraints.

Each row of G4 and Gp identifies which assets belong to a base and comparison group
associated with that row.

Each row contains either Os or 1s with 1 indicating that an asset is part of the group or O
indicating that the asset is not part of the group.

Portfolio object properties to specify group ratio constraints are:

* GroupA for G4

* GroupB for Gp

*+ LowerRatio for Ip
+ UpperRatio for ug
* NumAssets for n

The default is to ignore these constraints.
Average Turnover Constraints

Turnover constraint is a linear absolute value constraint that ensures estimated optimal
portfolios differ from an initial portfolio by no more than a specified amount. Although

4-12
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portfolio turnover is defined in many ways, the turnover constraints implemented in
Financial Toolbox computes portfolio turnover as the average of purchases and sales.
Average turnover constraints take the form

1.7
-1 - <7
2 | x —x0 |

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

X is the initial portfolio (n vector).

7 1s the upper bound for turnover (scalar).
n is the number of assets in the universe.

Portfolio object properties to specify the average turnover constraint are:

* Turnover fort
* InitPort for x,

* NumAssets for n

The default is to ignore this constraint.

One-way Turnover Constraints

One-way turnover constraints ensure that estimated optimal portfolios differ from an

initial portfolio by no more than specified amounts according to whether the differences
are purchases or sales. The constraints take the forms

17" max {0,x - x,} <75
1T

max {0,x, —x} < 7g

where:

4-13
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x is the portfolio (n vector)

1 is the vector of ones (n vector).

x¢ 1s the Initial portfolio (n vector).

Tp 1s the upper bound for turnover constraint on purchases (scalar).

Tg 1s the upper bound for turnover constraint on sales (scalar).

To specify one-way turnover constraints, use the following properties in the Portfolio or
PortfolioCVaR object:

* BuyTurnover for tp
+ SellTurnover for tg

+ InitPort for x,

The default is to ignore this constraint.

Note: The average turnover constraint (see “Working with Average Turnover Constraints
Using Portfolio Object” on page 4-73) with t is not a combination of the one-way
turnover constraints with t© = tp = tg.

Tracking Error Constraints
Tracking error constraint, within a portfolio optimization framework, is an additional

constraint to specify the set of feasible portfolios known as a portfolio set. The tracking-
error constraint has the form

(x —2p) T Clax — xp) <772

where:
x is the portfolio (n vector).
x71s the tracking portfolio against which risk is to be measured (n vector).

77 1s the upper bound for tracking error (scalar).
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n is the number of assets in the universe.
Portfolio object properties to specify the average turnover constraint are:

+ TrackingPort for xp

+ TrackingError for tr

The default is to ignore this constraint.

Note: The tracking error constraints can be used with any of the other supported
constraints in the Portfolio object without restrictions. However, since the portfolio

set necessarily and sufficiently must be a non-empty compact set, the application of a
tracking error constraint may result in an empty portfolio set. Use estimateBounds to
confirm that the portfolio set is non-empty and compact.

Default Portfolio Problem

The default portfolio optimization problem has a risk and return proxy associated with
a given problem, and a portfolio set that specifies portfolio weights to be nonnegative
and to sum to 1. The lower bound combined with the budget constraint is sufficient to
ensure that the portfolio set is nonempty, closed, and bounded. The default portfolio
optimization problem characterizes a long-only investor who is fully invested in a
collection of assets.

+  For mean-variance portfolio optimization, it is sufficient to set up the default problem.
After setting up the problem, data in the form of a mean and covariance of asset
returns are then used to solve portfolio optimization problems.

+  For conditional value-at-risk portfolio optimization, the default problem requires the
additional specification of a probability level that must be set explicitly. Generally,
“typical” values for this level are 0.90 or 0.95. After setting up the problem, data in
the form of scenarios of asset returns are then used to solve portfolio optimization
problems.

*  For MAD portfolio optimization, it is sufficient to set up the default problem. After
setting up the problem, data in the form of scenarios of asset returns are then used to
solve portfolio optimization problems.

See Also

Portfolio

4-15
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Related Examples

. “Creating the Portfolio Object” on page 4-24

. “Working with Portfolio Constraints” on page 4-57
. “Asset Allocation Case Study” on page 4-142

. “Portfolio Optimization Examples” on page 4-114

More About

. Using Portfolio Objects
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)

4-16


http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html

Portfolio Object Workflow

Portfolio Object Workflow

The Portfolio object workflow for creating and modeling a mean-variance portfolio is:

1

Create a Portfolio.

Create a Portfolio object for mean-variance portfolio optimization. For more
information, see “Creating the Portfolio Object” on page 4-24.

Estimate the mean and covariance for returns.

Evaluate the mean and covariance for portfolio asset returns, including assets
with missing data and financial time series data. For more information, see “Asset
Returns and Moments of Asset Returns Using Portfolio Object” on page 4-41.

Specify the Portfolio Constraints.

Define the constraints for portfolio assets such as linear equality and inequality,
bound, budget, group, group ratio, turnover, and tracking error constraints. For more
information, see “Working with Portfolio Constraints” on page 4-57.

Validate the Portfolio.

Identify errors for the portfolio specification. For more information, see “Validate the
Portfolio Problem for Portfolio Object” on page 4-82.

Estimate the efficient portfolios and frontiers.

Analyze the efficient portfolios and efficient frontiers for a portfolio. For more

information, see “Estimate Efficient Portfolios for Portfolio Object” on page 4-87
and “Estimate Efficient Frontiers for Portfolio Object” on page 4-99.

Postprocess the results.

Use the efficient portfolios and efficient frontiers results to set up trades. For more
information, see “Postprocessing Results” on page 4-107.

For an example of this workflow, see “Asset Allocation Case Study” on page 4-142 and
“Portfolio Optimization Examples” on page 4-114.

Related Examples

“Asset Allocation Case Study” on page 4-142
“Portfolio Optimization Examples” on page 4-114
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More About

“Portfolio Optimization Theory” on page 4-2

External Websites

Getting Started with Portfolio Optimization (13 min 31 sec)

Using MATLAB to Optimize Portfolios with Financial Toolbox (33 min 24 sec)
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Portfolio Object

Portfolio Object

In this section...

“Portfolio Object Properties and Functions” on page 4-19
“Working with Portfolio Objects” on page 4-19

“Setting and Getting Properties” on page 4-20

“Displaying Portfolio Objects” on page 4-21

“Saving and Loading Portfolio Objects” on page 4-21
“Estimating Efficient Portfolios and Frontiers” on page 4-21
“Arrays of Portfolio Objects” on page 4-21

“Subclassing Portfolio Objects” on page 4-22

“Conventions for Representation of Data” on page 4-22

Portfolio Object Properties and Functions

The Portfolio object implements mean-variance portfolio optimization. Every property
and function of the Portfolio object is public, although some properties and functions
are hidden. See Using Portfolio Objects for the properties and functions of the Portfolio
object. The Portfolio object is a value object where every instance of the object is a
distinct version of the object. Since the Portfolio object is also a MATLAB object, it
inherits the default functions associated with MATLAB objects.

Working with Porifolio Objects

The Portfolio object and its functions are an interface for mean-variance portfolio
optimization. So, almost everything you do with the Portfolio object can be done using the
associated functions. The basic workflow is:

1  Design your portfolio problem.

2 Use the Portfolio function to create the Portfolio object or use the various set
functions to set up your portfolio problem.

3 Use estimate functions to solve your portfolio problem.

In addition, functions are available to help you view intermediate results and to diagnose
your computations. Since MATLAB features are part of a Portfolio object, you can save
and load objects from your workspace and create and manipulate arrays of objects. After

4-19
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settling on a problem, which, in the case of mean-variance portfolio optimization, means
that you have either data or moments for asset returns and a collection of constraints

on your portfolios, use the Portfol io function to set the properties for the Portfolio
object. The Portfol 1o function lets you create an object from scratch or update an
existing object. Since the Portfolio object is a value object, it is easy to create a basic
object, then use functions to build upon the basic object to create new versions of the
basic object. This is useful to compare a basic problem with alternatives derived from the
basic problem. For details, see “Creating the Portfolio Object” on page 4-24.

Setting and Getting Properties

You can set properties of a Portfolio object using either the Portfolio function or
various set functions.

Note: Although you can also set properties directly, it is not recommended since error-
checking is not performed when you set a property directly.

The Portfolio function supports setting properties with name-value pair arguments
such that each argument name is a property and each value is the value to assign to that
property. For example, to set the AssetMean and AssetCovar properties in an existing
Portfolio object p with the values m and C, use the syntax:

p = Portfolio(p, "AssetMean®, m, "AssetCovar”, C);

In addition to the Portfolio function, which lets you set individual properties one at

a time, groups of properties are set in a Portfolio object with various “set” and “add”
functions. For example, to set up an average turnover constraint, use the setTurnover
function to specify the bound on portfolio average turnover and the initial portfolio. To
get individual properties from a Portfolio object, obtain properties directly or use an
assortment of “get” functions that obtain groups of properties from a Portfolio object. The
Portfolio function and set functions have several useful features:

* The Portfolio function and set functions try to determine the dimensions of your
problem with either explicit or implicit inputs.

* The Portfolio function and set functions try to resolve ambiguities with default
choices.

* The Portfolio function and set functions perform scalar expansion on arrays when
possible.
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* The associated Portfolio object functions try to diagnose and warn about problems.

Displaying Portfolio Objects

The Portfolio object uses the default display functions provided by MATLAB, where
display and disp display a Portfolio object and its properties with or without the object
variable name.

Saving and Loading Portfolio Objects

Save and load Portfolio objects using the MATLAB save and load commands.

Estimating Efficient Portfolios and Frontiers

Estimating efficient portfolios and efficient frontiers is the primary purpose of the
portfolio optimization tools. A collection of “estimate” and “plot” functions provide ways
to explore the efficient frontier. The “estimate” functions obtain either efficient portfolios
or risk and return proxies to form efficient frontiers. At the portfolio level, a collection of
functions estimates efficient portfolios on the efficient frontier with functions to obtain
efficient portfolios:

* At the endpoints of the efficient frontier

* That attain targeted values for return proxies

* That attain targeted values for risk proxies

+ Along the entire efficient frontier

These functions also provide purchases and sales needed to shift from an initial or
current portfolio to each efficient portfolio. At the efficient frontier level, a collection of
functions plot the efficient frontier and estimate either risk or return proxies for efficient

portfolios on the efficient frontier. You can use the resultant efficient portfolios or risk
and return proxies in subsequent analyses.

Arrays of Portfolio Objects

Although all functions associated with a Portfolio object are designed to work on a scalar
Portfolio object, the array capabilities of MATLAB enables you to set up and work with
arrays of Portfolio objects. The easiest way to do this is with the repmat function. For
example, to create a 3-by-2 array of Portfolio objects:
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p = repmat(Portfolio, 3, 2);

disp(p)

After setting up an array of Portfolio objects, you can work on individual Portfolio objects
in the array by indexing. For example:

p(i.j) = Portfolio(p(i.j), -.. ):
This example calls the Portfolio function for the (i,J) element of a matrix of Portfolio
objects in the variable p.

If you set up an array of Portfolio objects, you can access properties of a particular
Portfolio object in the array by indexing so that you can set the lower and upper bounds
Ib and ub for the (i,j,k) element of a 3-D array of Portfolio objects with

p(i.J.k) = setBounds(p(i,j.k),Ib, ub);
and, once set, you can access these bounds with

[Ib, ub] = getBounds(p(i,j.k)):;
Portfolio object functions work on only one Portfolio object at a time.

Subclassing Portfolio Objects

You can subclass the Portfolio object to override existing functions or to add new
properties or functions. To do so, create a derived class from the Portfolio class. This
gives you all the properties and functions of the Portfolio class along with any new
features that you choose to add to your subclassed object. The Portfolio class is derived
from an abstract class called AbstractPortfolio. Because of this, you can also create

a derived class from AbstractPortfolio that implements an entirely different form of
portfolio optimization using properties and functions of the AbstractPortfolio class.

Conventions for Representation of Data

The portfolio optimization tools follow these conventions regarding the representation of
different quantities associated with portfolio optimization:

+ Asset returns or prices are in matrix form with samples for a given asset going down
the rows and assets going across the columns. In the case of prices, the earliest dates
must be at the top of the matrix, with increasing dates going down.

+ The mean and covariance of asset returns are stored in a vector and a matrix and the
tools have no requirement that the mean must be either a column or row vector.

* Portfolios are in vector or matrix form with weights for a given portfolio going down
the rows and distinct portfolios going across the columns.
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Constraints on portfolios are formed in such a way that a portfolio is a column vector.

Portfolio risks and returns are either scalars or column vectors (for multiple portfolio
risks and returns).

See Also

Portfolio

Related Examples

“Creating the Portfolio Object” on page 4-24
“Working with Portfolio Constraints” on page 4-57
“Asset Allocation Case Study” on page 4-142
“Portfolio Optimization Examples” on page 4-114

More About

“Portfolio Optimization Theory” on page 4-2
“Portfolio Object Workflow” on page 4-17

External Websites

Getting Started with Portfolio Optimization (13 min 31 sec)
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In this section...

“Syntax” on page 4-24
“Portfolio Problem Sufficiency” on page 4-25

“Portfolio Function Examples” on page 4-25

To create a fully specified mean-variance portfolio optimization problem, instantiate the
Portfolio object using the Portfolio function. For information on the workflow when
using Portfolio objects, see “Portfolio Object Workflow” on page 4-17.

Syntax

Use the Portfolio function to create an instance of an object of the Portfolio class.
You can use the Portfolio function in several ways. To set up a portfolio optimization
problem in a Portfolio object, the simplest syntax is:

p = Portfolio;
This syntax creates a Portfolio object, p, such that all object properties are empty.

The Portfolio function also accepts collections of argument name-value pair
arguments for properties and their values. The Portfolio function accepts inputs for
public properties with the general syntax:

p = Portfolio("propertyl”, valuel, “property2®, value2, ... );

If a Portfolio object already exists, the syntax permits the first (and only the first
argument) of the Portfol 1o function to be an existing object with subsequent argument
name-value pair arguments for properties to be added or modified. For example, given an
existing Portfolio object in p, the general syntax is:

p = Portfolio(p, "propertyl®, valuel, “property2®, value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In
addition, several properties can be specified with alternative argument names (see
“Shortcuts for Property Names” on page 4-29). The Portfolio function tries

to detect problem dimensions from the inputs and, once set, subsequent inputs can
undergo various scalar or matrix expansion operations that simplify the overall process
to formulate a problem. In addition, a Portfolio object is a value object so that, given
portfolio p, the following code creates two objects, p and g, that are distinct:
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q = Portfolio(p, ---.)

Portfolio Problem Sufficiency

A mean-variance portfolio optimization is completely specified with the Portfolio object if
these two conditions are met:

The moments of asset returns must be specified such that the property AssetMean
contains a valid finite mean vector of asset returns and the property AssetCovar
contains a valid symmetric positive-semidefinite matrix for the covariance of asset
returns.

The first condition is satisfied by setting the properties associated with the moments
of asset returns.

The set of feasible portfolios must be a nonempty compact set, where a compact set is
closed and bounded.

The second condition is satisfied by an extensive collection of properties that define
different types of constraints to form a set of feasible portfolios. Since such sets
must be bounded, either explicit or implicit constraints can be imposed, and several
functions, such as estimateBounds, provide ways to ensure that your problem is
properly formulated.

Although the general sufficiency conditions for mean-variance portfolio optimization

go beyond these two conditions, the Portfolio object implemented in Financial Toolbox
implicitly handles all these additional conditions. For more information on the
Markowitz model for mean-variance portfolio optimization, see “Portfolio Optimization”
on page A-10.

Portfolio Function Examples

If you create a Portfolio object, p, with no input arguments, you can display it using
disp:

p = Portfolio;
disp(p); Portfolio

Portfolio with properties:

BuyCost: []
SellCost: []
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RiskFreeRate: []
AssetMean: []
AssetCovar: []
TrackingError: []
TrackingPort: []
Turnover: []
BuyTurnover: []
SellTurnover: []
Name: []
NumAssets: []
AssetList: []
InitPort: []
Alnequality: []
blnequality: []
AEquality: []
bEquality: []
LowerBound: []
UpperBound: []
LowerBudget: []
UpperBudget: []
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

The approaches listed provide a way to set up a portfolio optimization problem with the
Portfolio function. The set functions offer additional ways to set and modify collections
of properties in the Portfolio object.

Using the Portfolio Function for a Single-Step Setup

You can use the Portfolio function to directly set up a “standard” portfolio
optimization problem, given a mean and covariance of asset returns in the variables m
and C:

m
C

[ 0.05; 0.1; 0.12; 0.18 ];
[ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 1;
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p = Portfolio(“assetmean®, m, "assetcovar”, C, ...

"lowerbudget®, 1, “upperbudget®, 1, "lowerbound®, 0);

The LowerBound property value undergoes scalar expansion since AssetMean and
AssetCovar provide the dimensions of the problem.

You can use dot notation with the function plotFrontier.

p-plotFrontier;

-
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Using the Portfolio Function with a Sequence of Steps

An alternative way to accomplish the same task of setting up a “standard” portfolio
optimization problem, given a mean and covariance of asset returns in the variables m
and C (which also illustrates that argument names are not case-sensitive):

m
C

[ 0.05; 0.1; 0.12; 0.18 ];

[ 0.0064 0.00408 0.00192 O;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
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p = Portfolio;
p = Portfolio(p, "assetmean®, m, "assetcovar”, C);
p = Portfolio(p, "lowerbudget®, 1, “upperbudget®, 1);
p = Portfolio(p, "lowerbound®, 0);
plotFrontier(p);
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This way works because the calls to the Portfol io function are in this particular order.
In this case, the call to initialize AssetMean and AssetCovar provides the dimensions
for the problem. If you were to do this step last, you would have to explicitly dimension
the LowerBound property as follows:

m= [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

p = Portfolio;
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p = Portfolio(p, "LowerBound®, zeros(size(m)));

p = Portfolio(p, "LowerBudget®, 1, “UpperBudget®, 1);
p = Portfolio(p, "AssetMean®, m, "AssetCovar®, C);

plotFrontier(p);
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If you did not specify the size of LowerBound but, instead, input a scalar argument, the
Portfolio function assumes that you are defining a single-asset problem and produces
an error at the call to set asset moments with four assets.

Shortcuts for Property Names

The Portfolio function has shorter argument names that replace longer argument
names associated with specific properties of the Portfolio object. For example, rather
than enter "assetcovar”®, the Portfolio function accepts the case-insensitive name
"covar” to set the AssetCovar property in a Portfolio object. Every shorter argument
name corresponds with a single property in the Portfolio function. The one exception
is the alternative argument name "budget”, which signifies both the LowerBudget
and UpperBudget properties. When "budget” is used, then the LowerBudget and
UpperBudget properties are set to the same value to form an equality budget constraint.
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Shortcuts for Property Names

Shortcut Argument Name

Equivalent Argument / Property Name

ae AEquality

ai Alnequality
covar AssetCovar
assetnames or assets AssetList
mean AssetMean

be bEquality

bi blnequality
group GroupMatrix
1b LowerBound

n or num NumAssets
rfr RiskFreeRate
ub UpperBound
budget UpperBudget and LowerBudget

For example, this call to the Portfolio function uses these shortcuts for properties and

1s equivalent to the previous examples:

m
C

[ 0.05; 0.1; 0.12; 0.18 ];
[ 0.0064 0.00408 0.00192 O;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

p = Portfolio("mean®, m,
plotFrontier(p);

“covar®, C, “budget®, 1, "Ib", 0);

Direct Setting of Portfolio Object Properties

Although not recommended, you can set properties directly, however no error-checking is

done on your inputs:

m
C

[ 0.05; 0.1; 0.12; 0.18 ];
[ 0.0064 0.00408 0.00192 O;

0.00408 0.0289 0.0204 0.0119;
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0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p-NumAssets = numel(m);
p-AssetMean = m;

p-AssetCovar = C;
p-LowerBudget = 1;
p-UpperBudget = 1;
p-LowerBound = zeros(size(m));
plotFrontier(p);

See Also

estimateBounds | Portfolio

Related Examples

. “Common Operations on the Portfolio Object” on page 4-32
. “Working with Portfolio Constraints” on page 4-57

. “Asset Allocation Case Study” on page 4-142

. “Portfolio Optimization Examples” on page 4-114

More About

. “Portfolio Object” on page 4-19

. “Portfolio Optimization Theory” on page 4-2
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)

4-31


http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html

4 Mean-Variance Portfolio Optimization Tools

Common Operations on the Portfolio Object

In this section...

“Naming a Portfolio Object” on page 4-32

“Configuring the Assets in the Asset Universe” on page 4-32
“Setting Up a List of Asset Identifiers” on page 4-33
“Truncating and Padding Asset Lists” on page 4-34

“Setting Up an Initial or Current Portfolio” on page 4-35

“Setting Up a Tracking Portfolio” on page 4-37

Naming a Portfolio Object

To name a Portfolio object, use the Name property. Name is informational and has no
effect on any portfolio calculations. If the Name property is nonempty, Name is the title
for the efficient frontier plot generated by plotFrontier. For example, if you set up an
asset allocation fund, you could name the Portfolio object Asset Allocation Fund:

p = Portfolio("Name", "Asset Allocation Fund®);
disp(p-Name);

Asset Allocation Fund

Configuring the Assets in the Asset Universe

The fundamental quantity in the Portfolio object is the number of assets in the asset
universe. This quantity is maintained in the NumAssets property. Although you can

set this property directly, it is usually derived from other properties such as the mean
of asset returns and the initial portfolio. In some instances, the number of assets may
need to be set directly. This example shows how to set up a Portfolio object that has four
assets:

p = Portfolio("NumAssets”, 4);
disp(p-NumAssets);

4

After setting the NumAssets property, you cannot modify it (unless no other properties
are set that depend on NumAssets). The only way to change the number of assets in an
existing Portfolio object with a known number of assets is to create a new Portfolio object.
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Setting Up a List of Asset Identifiers

When working with portfolios, you must specify a universe of assets. Although you can
perform a complete analysis without naming the assets in your universe, it is helpful to
have an identifier associated with each asset as you create and work with portfolios. You
can create a list of asset identifiers as a cell vector of strings in the property AssetList.
You can set up the list using the next two functions.

Setting Up Asset Lists Using the Portfolio Function

Suppose that you have a Portfolio object, p, with assets with symbols "AA"', "BA",
"CAT", "DD", and "ETR". You can create a list of these asset symbols in the object using
the Portfolio function:

p = Portfolio("assetlist”, { "AA", "BA", "CAT", "DD", "ETR" });

disp(p.AssetList);

"AA* "BA* "CAT" “DD* "ETR"

Notice that the property AssetList is maintained as a cell array that contains

strings, and that it is necessary to pass a cell array into the Portfolio function to set
AssetList. In addition, notice that the property NumAssets is set to 5 based on the
number of symbols used to create the asset list:

disp(p-NumAssets);

5
Setting Up Asset Lists Using the setAssetList Function

You can also specify a list of assets using the setAssetList function. Given the list of
asset symbols "AA", "BA", "CAT", "DD", and"ETR", you can use setAssetList with:

p = Portfolio;

p = setAssetList(p, { "AA", "BA", "CAT", "DD", "ETR" });
disp(p-AssetList);

"AA* "BA* "CAT" "DD* "ETR"

setAssetList also enables you to enter symbols directly as a comma-separated list
without creating a cell array of strings. For example, given the list of assets symbols
*AA", "BA*", "CAT", "DD", and "ETR", use setAssetList:

Portfolio;
setAssetList(p, "AA", "BA", "CAT", "DD", "ETR");

p
p
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disp(p-AssetList);

"AA* "BA* "CAT*" "DD* "ETR"

setAssetlList has many additional features to create lists of asset identifiers. If you use
setAssetList with just a Portfolio object, it creates a default asset list according to the
name specified in the hidden public property defaultforAssetList (which is "Asset”
by default). The number of asset names created depends on the number of assets in the
property NumAssets. If NumAssets is not set, then NumAssets is assumed to be 1.

For example, if a Portfolio object p is created with NumAssets = 5, then this code
fragment shows the default naming behavior:

p = Portfolio("numassets”,5);
p = setAssetList(p);

disp(p-AssetList);

"Assetl” "Asset2” "Asset3” "Asset4” "Asset5”

Suppose that your assets are, for example, ETFs and you change the hidden property
defaultforAssetList to "ETF", you can then create a default list for ETF's:

p = Portfolio("numassets”,5);
p.defaultforAssetList = "ETF";

p = setAssetList(p);

disp(p-AssetList);

"ETF1* "ETF2* "ETF3* "ETF4* "ETF5*"

Truncating and Padding Asset Lists

If the NumAssets property is already set and you pass in too many or too few identifiers,
the Portfolio function, and the setAssetList function truncate or pad the list with
numbered default asset names that use the name specified in the hidden public property
defaultforAssetList. If the list is truncated or padded, a warning message indicates
the discrepancy. For example, assume that you have a Portfolio object with five ETFs and
you only know the first three CUSIPs "921937835", "922908769", and "922042775".
Use this syntax to create an asset list that pads the remaining asset identifiers with
numbered "UnknownCUSIP*® placeholders:

p = Portfolio(“numassets®,5);
p.defaultforAssetList = "UnknownCUSIP";

p = setAssetList(p, 921937835, "922908769", "922042775%);
disp(p.AssetList);

Warning: Input list of assets has 2 too few identifiers. Padding with numbered assets.
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> In Portfolio.setAssetList at 121
"921937835" "922908769" "922042775" “UnknownCUSIP4* “UnknownCUSIP5*

Alternatively, suppose that you have too many identifiers and need only the first four
assets. This example illustrates truncation of the asset list using the Portfolio
function:

p = Portfolio("numassets”,4);

p = Portfolio(p, "assetlist”, { "AGG", "EEM", "MDY", "SPY", "VEU" });
disp(p-AssetList);

Warning: AssetList has 1 too many identifiers. Using First 4 assets.
> In Portfolio.checkarguments at 434
In Portfolio.Portfolio>Portfolio.Portfolio at 171
"AGG* "EEM*" “MDY " "SPY*

The hidden public property uppercaseAssetList is a Boolean flag to specify whether
to convert asset names to uppercase letters. The default value for uppercaseAssetList
is False. This example shows how to use the uppercaseAssetList flag to force
identifiers to be uppercase letters:

p = Portfolio;

p.-uppercaseAssetList = true;

p = setAssetList(p,{ "aa", "ba", "cat", "dd", "etr" });
disp(p-AssetList);

"AA* "BA* "CAT*" "DD* "ETR"

Setting Up an Initial or Current Portfolio

In many applications, creating a new optimal portfolio requires comparing the new
portfolio with an initial or current portfolio to form lists of purchases and sales. The
Portfolio object property InitPort lets you identify an initial or current portfolio.

The initial portfolio also plays an essential role if you have either transaction costs or
turnover constraints. The initial portfolio need not be feasible within the constraints

of the problem. This can happen if the weights in a portfolio have shifted such that
some constraints become violated. To check if your initial portfolio is feasible, use the
checkFeasibi l ity function described in “Validating Portfolios” on page 4-84.

Suppose that you have an initial portfolio in X0, then use the Portfol io function to set
up an initial portfolio:

x0 = [ 0.3; 0.2; 0.2; 0.0 ];

p = Portfolio("InitPort®, x0);
disp(p-InitPort);
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0.3000
0.2000
0.2000

0

As with all array properties, you can set InitPort with scalar expansion. This is helpful
to set up an equally weighted initial portfolio of, for example, 10 assets:

p = Portfolio("NumAssets®, 10, "InitPort", 1/10);
disp(p-InitPort);
.1000

.1000

.1000

.1000

.1000

.1000

.1000

.1000

.1000

.1000

cNoNeoloNoNoNeoNoNelNo)

To clear an initial portfolio from your Portfolio object, use either the Portfolio or the
setInitPort function with an empty input for the InitPort property. If transaction
costs or turnover constraints are set, it is not possible to clear the InitPort property in
this way. In this case, to clear InitPort, first clear the dependent properties and then
clear thelnitPort property.

The InitPort property can also be set with setlnitPort which lets you specify the
number of assets if you want to use scalar expansion. For example, given an initial
portfolio in X0, use setlnitPort to set the InitPort property:

p = Portfolio;

x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = setlnitPort(p, x0);
disp(p-InitPort);

0.3000
0.2000
0.2000

0

To create an equally weighted portfolio of four assets, use setlnitPort:

p = Portfolio;
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p = setlnitPort(p, 174, 4);
disp(p-InitPort);

0.2500
0.2500
0.2500
0.2500

Portfolio object functions that work with either transaction costs or turnover constraints
also depend on the InitPort property. So, the set functions for transaction costs or
turnover constraints permit the assignment of a value for the InitPort property as part
of their implementation. For details, see “Working with Average Turnover Constraints
Using Portfolio Object” on page 4-73, “Working with One-way Turnover Constraints
Using Portfolio Object” on page 4-75, and “Working with Transaction Costs” on page
4-52 for details. If either transaction costs or turnover constraints are used, then

the InitPort property must have a nonempty value. Absent a specific value assigned
through the Portfolio function or various set functions, the Portfolio object sets
InitPort to O and warns if BuyCost, SelICost, or Turnover properties are set. The
following example illustrates what happens if an average turnover constraint is specified
with an initial portfolio:

p = Portfolio("Turnover®, 0.3, "“InitPort®, [ 0.3; 0.2; 0.2; 0.0 ]);
disp(p-InitPort);

0.3000
0.2000
0.2000
0
In contrast, this example shows what happens if an average turnover constraint is
specified without an initial portfolio:

p = Portfolio("Turnover®, 0.3);
disp(p-InitPort);

Warning: InitPort and NumAssets are empty and either transaction costs or turnover constraints specified.
Will set NumAssets = 1 and InitPort = O.
> In Portfolio.checkarguments at 367
In Portfolio.Portfolio>Portfolio.Portfolio at 171
0

Setting Up a Tracking Portfolio
Given a benchmark or tracking portfolio, you can ensure that the risk of a portfolio

relative to the benchmark portfolio is no greater than a specified amount. The Portfolio
object property TrackingPort lets you identify a tracking portfolio. For more
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information on using a tracking portfolio with tracking error constraints, see “Working
with Tracking Error Constraints Using Portfolio Object” on page 4-78.

The tracking error constraints can be used with any of the other supported constraints
in the Portfolio object without restrictions. However, since the portfolio set necessarily
and sufficiently must be a non-empty compact set, the application of a tracking error
constraint can result in an empty portfolio set. Use estimateBounds to confirm that the
portfolio set is non-empty and compact.

Suppose that you have an initial portfolio in X0, then use the Portfolio function to set
up a tracking portfolio:

x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = Portfolio("TrackingPort®, x0);
disp(p-TrackingPort);

0.3000
0.2000
0.2000

0

As with all array properties, you can set TrackingPort with scalar expansion. This is
helpful to set up an equally weighted tracking portfolio of, for example, 10 assets:

p = Portfolio("NumAssets®, 10, “TrackingPort®, 1/10);
disp(p-TrackingPort);

0.1000
0.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000

oNoNoNoNoNeoNoNe)

To clear a tracking portfolio from your Portfolio object, use either the Portfolio or

the setTrackingPort function with an empty input for the TrackingPort property.
If transaction costs or turnover constraints are set, it is not possible to clear the
TrackingPort property in this way. In this case, to clear TrackingPort, first clear the
dependent properties and then clear theTrackingPort property.
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The TrackingPort property can also be set with setTrackingPort which lets you
specify the number of assets if you want to use scalar expansion. For example, given an
initial portfolio in X0, use setTrackingPort to set the TrackingPort property:

p = Portfolio;

x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = setTrackingPort(p, x0);
disp(p-TrackingPort);

0.3000
0.2000
0.2000

0

To create an equally weighted portfolio of four assets, use setTrackingPort:

Portfolio;
setTrackingPort(p, 1/4, 4);

p =
p =
disp(p-TrackingPort);

0.2500
0.2500
0.2500
0.2500

See Also

checkFeasibility | estimateBounds | Portfolio | setAssetList |
setlnitPort | setTrackingPort

Related Examples
. “Working with Portfolio Constraints” on page 4-57

. “Asset Returns and Moments of Asset Returns Using Portfolio Object” on page
4-41

. “Validate the Portfolio Problem for Portfolio Object” on page 4-82
. “Asset Allocation Case Study” on page 4-142
. “Portfolio Optimization Examples” on page 4-114

More About
. “Portfolio Object” on page 4-19
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. “Portfolio Optimization Theory” on page 4-2
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)
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Asset Returns and Moments of Asset Returns Using Portfolio Object

Asset Returns and Moments of Asset Returns Using Portfolio Object

In this section...

“Assignment Using the Portfolio Function” on page 4-41
“Assignment Using the setAssetMoments Function” on page 4-43
“Scalar Expansion of Arguments” on page 4-43

“Estimating Asset Moments from Prices or Returns” on page 4-45
“Estimating Asset Moments with Missing Data” on page 4-48
“Estimating Asset Moments from Time Series Data” on page 4-50
“Working with a Riskless Asset” on page 4-51

“Working with Transaction Costs” on page 4-52

Since mean-variance portfolio optimization problems require estimates for the mean
and covariance of asset returns, the Portfolio object has several ways to set and get the
properties AssetMean (for the mean) and AssetCovar (for the covariance). In addition,
the return for a riskless asset is kept in the property RiskFreeRate so that all assets
in AssetMean and AssetCovar are risky assets. For information on the workflow when
using Portfolio objects, see “Portfolio Object Workflow” on page 4-17.

Assignment Using the Portfolio Function

Suppose that you have a mean and covariance of asset returns in variables m and C. The
properties for the moments of asset returns are set using the Portfolio function:

m= [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 O;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

p = Portfolio(“AssetMean®, m, "AssetCovar®, C);

disp(p-NumAssets);

disp(p-AssetMean);
disp(p-AssetCovar);

N

4-41



4 Mean-Variance Portfolio Optimization Tools

-0042
-0083
-0100
-0150

oNeoNoNe)

-0005 0.0003 0.0002 0
-0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0 0.0010 0.0028 0.0102

Notice that the Portfolio object determines the number of assets in NumAssets from the
moments. The Portfol 1o function enables separate initialization of the moments, for
example:

oNe)

m [ 0.05; 0.1; 0.12; 0.18 ];

C [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
p = Portfolio;
p = Portfolio(p, "AssetMean®, m);
p = Portfolio(p, "AssetCovar®, C);
[assetmean, assetcovar] = p.getAssetMoments
assetmean =
0.0042
0.0083
0.0100
0.0150
assetcovar =
0.0005 0.0003 0.0002 0

0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0 0.0010 0.0028 0.0102

The getAssetMoments function lets you get the values for AssetMean and AssetCovar
properties at the same time.
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Assignment Using the setAssetMoments Function

You can also set asset moment properties using the setAssetMoments function. For
example, given the mean and covariance of asset returns in the variables m and C, the
asset moment properties can be set:

m= [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0O;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
p = Portfolio;
p = setAssetMoments(p, m, C);
[assetmean, assetcovar] = getAssetMoments(p)
assetmean =
0.0042
0.0083
0.0100
0.0150
assetcovar =
0.0005 0.0003 0.0002 0

0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0 0.0010 0.0028 0.0102

Scalar Expansion of Arguments

Both the Portfol io function and the setAssetMoments function perform scalar
expansion on arguments for the moments of asset returns. When using the Portfolio
function, the number of assets must be already specified in the variable NumAssets. If
NumAssets has not already been set, a scalar argument is interpreted as a scalar with
NumAssets set to 1. setAssetMoments provides an additional optional argument to
specify the number of assets so that scalar expansion works with the correct number of
assets. In addition, if either a scalar or vector is input for the covariance of asset returns,
a diagonal matrix is formed such that a scalar expands along the diagonal and a vector
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becomes the diagonal. This example demonstrates scalar expansion for four jointly
independent assets with a common mean 0.1 and common variance 0.03:

p = Portfolio;
p = setAssetMoments(p, 0.1, 0.03, 4);
[assetmean, assetcovar] = getAssetMoments(p)
assetmean =
0.1000
0.1000
0.1000
0.1000
assetcovar =
0.0300 0 0 0
0 0.0300 0 0
0 0 0.0300 0
0 0 0 0.0300

If at least one argument is properly dimensioned, you do not need to include the
additional NumAssets argument. This example illustrates a constant-diagonal
covariance matrix and a mean of asset returns for four assets:

p = Portfolio;
p = setAssetMoments(p, [ 0.-05; 0.06; 0.04; 0.03 ], 0.03);
[assetmean, assetcovar] = getAssetMoments(p)
assetmean =
0.0500
0.0600
0.0400
0.0300
assetcovar =
0.0300 0 0 0
0 0.0300 0 0
0 0 0.0300 0
0 0 0 0.0300

In addition, scalar expansion works with the Portfol io function if NumAssets is
known, or is deduced from the inputs.
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Estimating Asset Moments from Prices or Returns

Another way to set the moments of asset returns is to use the estimateAssetMoments
function which accepts either prices or returns and estimates the mean and covariance
of asset returns. Either prices or returns are stored as matrices with samples going down
the rows and assets going across the columns. In addition, prices or returns can be stored
in a financial time series (Fints) object (see “Estimating Asset Moments from Time
Series Data” on page 4-50). To illustrate using estimateAssetMoments, generate
random samples of 120 observations of asset returns for four assets from the mean and
covariance of asset returns in the variables m and C with portsim. The default behavior
of portsim creates simulated data with estimated mean and covariance identical to the
input moments m and C. In addition to a return series created by portsim in the variable
X, a price series 1s created in the variable Y:

m= 1 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

X = portsim(m®, C, 120);

Y = ret2tick(X);

Note: Portfolio optimization requires that you use total returns and not just price
returns. So, "returns" should be total returns and "prices" should be total return prices.

Given asset returns and prices in variables X and Y from above, this sequence of
examples demonstrates equivalent ways to estimate asset moments for the Portfolio
object. A Portfolio object is created in p with the moments of asset returns set
directly in the Portfolio function, and a second Portfolio object is created in q to
obtain the mean and covariance of asset returns from asset return data in X using
estimateAssetMoments:

m= [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;
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C = C/12;
X = portsim(m®, C, 120);
p = Portfolio("mean®, m, “covar®, C);
q = Portfolio;
q = estimateAssetMoments(q, X);
[passetmean, passetcovar] = getAssetMoments(p)
[gassetmean, gassetcovar] = getAssetMoments(q)
passetmean =
0.0042
0.0083
0.0100
0.0150
passetcovar =
0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0 0.0010 0.0028 0.0102
gassetmean =
0.0042
0.0083
0.0100
0.0150
gassetcovar =
0.0005 0.0003 0.0002 0.0000
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0.0000 0.0010 0.0028 0.0102

Notice how either approach has the same moments. The default behavior of
estimateAssetMoments is to work with asset returns. If, instead, you have asset prices
in the variable Y, estimateAssetMoments accepts a name-value pair argument name
"DataFormat” with a corresponding value set to "prices” to indicate that the input

to the function is in the form of asset prices and not returns (the default value for the
"DataFormat” argument is "returns”). This example compares direct assignment of
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moments in the Portfolio object p with estimated moments from asset price data in Y in
the Portfolio object q:

m= [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m=m/12;
C = C/12;
X = portsim(m®, C, 120);
Y = ret2tick(X);
p = Portfolio("mean®,m,"covar®,C);
q = Portfolio;
q = estimateAssetMoments(q, Y, “dataformat®, “prices”);
[passetmean, passetcovar] = getAssetMoments(p)
[gassetmean, gassetcovar] = getAssetMoments(q)
passetmean =
0.0042
0.0083
0.0100
0.0150
passetcovar =
0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0 0.0010 0.0028 0.0102
gassetmean =
0.0042
0.0083
0.0100
0.0150
gassetcovar =
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0.0005 0.0003
0.0003 0.0024
0.0002 0.0017
0.0000 0.0010

-0002 0.0000
.0017 0.0010
-0048 0.0028
-0028 0.0102

eNeoNeoNe]

Estimating Asset Moments with Missing Data

Often when working with multiple assets, you have missing data indicated by NaN values
in your return or price data. Although “Multivariate Normal Regression” on page 9-2
goes into detail about regression with missing data, the estimateAssetMoments
function has a name-value pair argument name "MissingData” that indicates with a
Boolean value whether to use the missing data capabilities of Financial Toolbox software.
The default value for *"MissingData” is false which removes all samples with NaN
values. If, however, "MissingData” is set to true, estimateAssetMoments uses the
ECM algorithm to estimate asset moments. This example illustrates how this works on
price data with missing values:

m

[ [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
X = portsim(m®, C, 120);
Y = ret2tick(X);
Y(1:20,1) = NaN;
Y(1:12,4) = NaN;
p = Portfolio(“mean”,m, "covar®,C);
q = Portfolio;
q = estimateAssetMoments(q, Y, “dataformat®, “prices”);
r = Portfolio;
r = estimateAssetMoments(r, Y, “dataformat®, “prices®, "missingdata”,
[passetmean, passetcovar] = getAssetMoments(p)
[gassetmean, gassetcovar] = getAssetMoments(q)
[rassetmean, rassetcovar] = getAssetMoments(r)
passetmean =

0.0042

0.0083

0.0100

0.0150

[ 0.05; 0.1; 0.12; 0.18 ];

true);
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passetcovar =
0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0 0.0010 0.0028 0.0102
gassetmean =
0.0045
0.0082
0.0101
0.0091
gassetcovar =
0.0006 0.0003 0.0001 -0.0000
0.0003 0.0023 0.0017 0.0011
0.0001 0.0017 0.0048 0.0029
-0.0000 0.0011 0.0029 0.0112
rassetmean =
0.0045
0.0083
0.0100
0.0113
rassetcovar =
0.0008 0.0005 0.0001 -0.0001
0.0005 0.0032 0.0022 0.0015
0.0001 0.0022 0.0063 0.0040
-0.0001 0.0015 0.0040 0.0144

The Portfolio object p contains raw moments, the object g contains estimated moments
in which NaN values are discarded, and the object r contains raw moments that
accommodate missing values. Each time you run this example, you will get different
estimates for the moments in g and r, and these will also differ from the moments in p.
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Estimating Asset Moments from Time Series Data

The estimateAssetMoments function also accepts asset returns or prices stored in
financial time series (Fints) objects. estimateAssetMoments implicitly works with
matrices of data or data in a Fints object using the same rules for whether the data are
returns or prices.

To illustrate, use FInts to create a Fints objects XFts that contains asset returns
generated with portsim (see “Estimating Asset Moments from Prices or Returns” on
page 4-45) and add series labels:

m
c

x
1}

d =
Xfts
Xfts

Xfts.
Xfts.
Xfts.
Xfts.

p

q
q

[pas
[gas

[ 0.05; 0.1; 0.12; 0.18
[ 0.0064 0.00408 0.00192
0.00408 0.0289 0.0204
0.00192 0.0204 0.0576

0 0.0119 0.0336 0.1225
m/12;
C/12;

portsim(m*, C, 120);

1;

0;
0.0119;
0.0336;

1;

(datenum("31-jan-2001"):datenum("31-dec-2010"))";
d),4), {"Bonds®, “LargeCap-,

= fints(d, zeros(numel(
= tomonthly(Xfts);

Bonds = X(:,1);

LargeCap = X(:,2);
SmallCap = X(:,3);
Emerging X(:,4);

Portfolio("mean”,m, “cova

Portfolio;
estimateAssetMoments(q,

setmean, passetcovar]
setmean, gassetcovar]

passetmean =

0.0042
0.0083
0.0100
0.0150

passetcovar =

0.0005 0.0003
0.0003 0.0024
0.0002 0.0017

0 0.0010

r ,C);

Xfts);

getAssetMoments(p)
getAssetMoments(q)

0.0002
0.0017
0.0048
0.0028

0.0010
0.0028
0.0102

“SmallCap®, "Emerging“});
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gassetmean =

0.0042
0.0083
0.0100
0.0150

gassetcovar =

0.0005 0.0003 0.0002 0.0000

0.0003 0.0024 0.0017 0.0010

0.0002 0.0017 0.0048 0.0028

0.0000 0.0010 0.0028 0.0102
As you can see, the moments match. The argument name-value inputs "DataFormat”
to handle return or price data and *"MissingData® to ignore or use samples with
missing values also work for Fints data. In addition, estimateAssetMoments also
extracts asset names or identifiers from a Fints object with the argument name
"GetAssetList" set to true (its default value is false). If the "GetAssetList”
value is true, the identifiers are used to set the AssetList property of the object. Thus,
repeating the formation of the Portfolio object g from the previous example with the
"GetAssetList" flag set to true extracts the series labels from the Fints object:

g = estimateAssetMoments(q, Xfts, “getassetlist”, true);

disp(g-.AssetList)

"Bonds* "LargeCap* "SmallCap* "Emerging”

Note if you set the "GetAssetList" flag set to true and your input data is in a matrix,
estimateAssetMoments uses the default labeling scheme from setAssetList
described in “Setting Up a List of Asset Identifiers” on page 4-33.

Working with a Riskless Asset

You can specify a riskless asset with the mean and covariance of asset returns in the
AssetMean and AssetCovar properties such that the riskless asset has variance of O
and is completely uncorrelated with all other assets. In this case, the Portfolio object
uses a separate RiskFreeRate property that stores the rate of return of a riskless asset.
Thus, you can separate your universe into a riskless asset and a collection of risky assets.
For example, assume that your riskless asset has a return in the scalar variable rO, then
the property for the RiskFreeRate is set using the Portfolio function:

ro = 0.01/12;
m=1[0.05; 0.1; 0.12; 0.18 1;
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C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

p = Portfolio("RiskFreeRate”, r0, "AssetMean”, m, "AssetCovar”, C);
disp(p-RiskFreeRate);

8.3333e-004

Note: If your problem has a budget constraint such that your portfolio weights must sum
to 1, then the riskless asset is irrelevant.

Working with Transaction Costs

The difference between net and gross portfolio returns is transaction costs. The net
portfolio return proxy has distinct proportional costs to purchase and to sell assets which
are maintained in the Portfolio object properties BuyCost and Sel ICost. Transaction
costs are in units of total return and, as such, are proportional to the price of an asset so
that they enter the model for net portfolio returns in return form. For example, suppose
that you have a stock currently priced $40 and your usual transaction costs are 5 cents
per share. Then the transaction cost for the stock is 0.05/40 = 0.00125 (as defined in

“Net Portfolio Returns” on page 4-4). Costs are entered as positive values and credits are
entered as negative values.

Setting Transaction Costs Using the Portfolio Function

To set up transaction costs, you must specify an initial or current portfolio in the
InitPort property. If the initial portfolio is not set when you set up the transaction
cost properties, InitPort is 0. The properties for transaction costs can be set using
thePortfolio function. For example, assume that purchase and sale transaction
costs are in the variables bc and sc and an initial portfolio is in the variable X0, then
transaction costs are set:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 ];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ]:

p = Portfolio("BuyCost®, bc, "SellCost”, sc, "“InitPort®, x0);
disp(p-NumAssets);

disp(p-BuyCost);

disp(p-SellCost);

disp(p-InitPort);
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Setting Transaction Costs Using the setCosts Function

You can also set the properties for transaction costs using setCosts. Assume that you
have the same costs and initial portfolio as in the previous example. Given a Portfolio
object p with an initial portfolio already set, use setCosts to set up transaction costs:

bc
sc
x0

[ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
[ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 7];
[ 0.4; 0.2; 0.2; 0.1; 0.1 ]:

Portfolio("InitPort®, x0);
setCosts(p, bc, sc);

p
p

disp(p-NumAssets);
disp(p-BuyCost);
disp(p-SellCost);
disp(p-InitPort);

5

0.0013
0.0013
0.0013
0.0013
0.0013
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You can also set up the initial portfolio's InitPort value as an optional argument to
setCosts so that the following is an equivalent way to set up transaction costs:

bc = [ 0.00125; 0.00125; 0.00125; 0.00125; 0.00125 ];
sc = [ 0.00125; 0.007; 0.00125; 0.00125; 0.0024 1];
x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ]:

p Portfolio;

p = setCosts(p, bc, sc, x0);
disp(p-NumAssets);
disp(p-BuyCost);
disp(p-SellCost);
disp(p-InitPort);

5

-0013
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0.1000
0.1000

Setting Transaction Costs with Scalar Expansion

Both the Portfolio function and the setCosts function implement scalar expansion on
the arguments for transaction costs and the initial portfolio. If the NumAssets property
1s already set in the Portfolio object, scalar arguments for these properties are expanded
to have the same value across all dimensions. In addition, setCosts lets you specify
NumAssets as an optional final argument. For example, assume that you have an initial
portfolio X0 and you want to set common transaction costs on all assets in your universe.
You can set these costs in any of these equivalent ways:

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = Portfolio( " InitPort™, x0, "BuyCost", 0.002, "SellCost", 0.002);

or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];

p = Portfolio("InitPort®, x0);
p = setCosts(p, 0.002, 0.002);
or

x0 = [ 0.4; 0.2; 0.2; 0.1; 0.1 ];
p = Portfolio;
p = setCosts(p, 0.002, 0.002, x0);

To clear costs from your Portfolio object, use either the Portfolio function or setCosts
with empty inputs for the properties to be cleared. For example, you can clear sales costs
from the Portfolio object p in the previous example:

p = Portfolio(p, “SellCost®, [1);

See Also

estimateAssetMoments | getAssetMoments | Portfolio | setAssetMoments |
setCosts

Related Examples

. “Creating the Portfolio Object” on page 4-24

. “Working with Portfolio Constraints” on page 4-57

. “Validate the Portfolio Problem for Portfolio Object” on page 4-82
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. “Estimate Efficient Portfolios for Portfolio Object” on page 4-87
. “Estimate Efficient Frontiers for Portfolio Object” on page 4-99
. “Asset Allocation Case Study” on page 4-142

. “Portfolio Optimization Examples” on page 4-114

More About

. “Portfolio Object” on page 4-19

. “Portfolio Optimization Theory” on page 4-2
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)


http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html

Working with Portfolio Constraints

Working with Portfolio Constraints

In this section...

“Setting Default Constraints for Portfolio Weights Using Portfolio Object” on page
4-57

“Working with Bound Constraints Using Portfolio Object” on page 4-60

“Working with Budget Constraints Using Portfolio Object” on page 4-62

“Working with Group Constraints Using Portfolio Object” on page 4-64

“Working with Group Ratio Constraints Using Portfolio Object” on page 4-67
“Working with Linear Equality Constraints Using Portfolio Object” on page 4-69
“Working with Linear Inequality Constraints Using Portfolio Object” on page 4-71
“Working with Average Turnover Constraints Using Portfolio Object” on page 4-73
“Working with One-way Turnover Constraints Using Portfolio Object” on page 4-75

“Working with Tracking Error Constraints Using Portfolio Object” on page 4-78

The final element for a complete specification of a portfolio optimization problem is

the set of feasible portfolios, which is called a portfolio set. A portfolio set X c R" is
specified by construction as the intersection of sets formed by a collection of constraints
on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty,
closed, and bounded set.

When setting up your portfolio set, ensure that the portfolio set satisfies these conditions.
The most basic or “default” portfolio set requires portfolio weights to be nonnegative
(using the lower-bound constraint) and to sum to 1 (using the budget constraint). For
information on the workflow when using Portfolio objects, see “Portfolio Object Workflow”
on page 4-17.

Setting Default Constraints for Portfolio Weights Using Portfolio Object

The “default” portfolio problem has two constraints on portfolio weights:

+ Portfolio weights must be nonnegative.

+ Portfolio weights must sum to 1.

Implicitly, these constraints imply that portfolio weights are no greater than 1, although
this is a superfluous constraint to impose on the problem.
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Setting Default Constraints Using the Portfolio Function

Given a portfolio optimization problem with NumAssets = 20 assets, use the Portfolio
function to set up a default problem and explicitly set bounds and budget constraints:

p = Portfolio("NumAssets®, 20, "LowerBound®, O, "Budget®, 1);
disp(p);

Portfolio with properties:

BuyCost: []
SellCost: []
RiskFreeRate: []
AssetMean: []
AssetCovar: []
TrackingError: []
TrackingPort: []
Turnover: []
BuyTurnover: []
SellTurnover: []
Name: []
NumAssets: 20
AssetList: []
InitPort: []
Alnequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: [1
GroupB: [1
LowerRatio: []
UpperRatio: []

Setting Default Constraints Using the setDefauliConstraints Function

An alternative approach is to use the setDefaultConstraints function. If the number
of assets is already known in a Portfolio object, use setDefaultConstraints with no
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arguments to set up the necessary bound and budget constraints. Suppose that you have
20 assets to set up the portfolio set for a default problem:

Portfolio("NumAssets™®, 20);
setDefaultConstraints(p);

p(p);

Portfolio with properties:

[l

p
p
di

BuyCost: []
SellCost: []
RiskFreeRate: []
AssetMean: []
AssetCovar: []
TrackingError: []
TrackingPort: []
Turnover: []
BuyTurnover: []
SellTurnover: []
Name: []
NumAssets: 20
AssetList: []
InitPort: []
Alnequality: []
blInequality: []
AEquality: []
bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: [1
GroupB: [1
LowerRatio: []
UpperRatio: []

If the number of assets is unknown, setDefaultConstraints accepts NumAssets as
an optional argument to form a portfolio set for a default problem. Suppose that you have
20 assets:

Portfolio;

p:
p = setDefaultConstraints(p, 20);
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disp(p);

Portfolio with properties:

BuyCost: []
SellCost: []
RiskFreeRate: []
AssetMean: []
AssetCovar: []
TrackingError: []
TrackingPort: []
Turnover: []
BuyTurnover: []
SellTurnover: []
Name: []
NumAssets: 20
AssetList: []
InitPort: []
Alnequality: []
blnequality: []
AEquality: []
bEquality: []
LowerBound: [20x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

Working with Bound Constraints Using Portfolio Object

Bound constraints are optional linear constraints that maintain upper and lower bounds
on portfolio weights (see “Bound Constraints” on page 4-9). Although every portfolio

set must be bounded, it is not necessary to specify a portfolio set with explicit bound
constraints. For example, you can create a portfolio set with an implicit upper bound
constraint or a portfolio set with average turnover constraints. The bound constraints
have properties LowerBound for the lower-bound constraint and UpperBound

for the upper-bound constraint. Set default values for these constraints using the

4-60



Working with Portfolio Constraints

setDefaul tConstraints function (see “Setting Default Constraints for Portfolio
Weights Using Portfolio Object” on page 4-57).

Setting Bounds Using the Portfolio Function

The properties for bound constraints are set through the Portfol io function. Suppose
that you have a balanced fund with stocks that can range from 50% to 75% of your
portfolio and bonds that can range from 25% to 50% of your portfolio. The bound
constraints for a balanced fund are set with:

1b [ 0.5; 0.25 ];
ub [ 0.75; 0.5 ];
p = Portfolio("LowerBound®, Ib, “UpperBound®, ub);
disp(p-NumAssets);
disp(p-LowerBound);
disp(p-UpperBound);

2

0.5000
0.2500

0.7500
0.5000

To continue with this example, you must set up a budget constraint. For details, see
“Working with Budget Constraints Using Portfolio Object” on page 4-62.

Setting Bounds Using the setBounds Function

You can also set the properties for bound constraints using setBounds. Suppose that you
have a balanced fund with stocks that can range from 50% to 75% of your portfolio and
bonds that can range from 25% to 50% of your portfolio. Given a Portfolio object p, use
setBounds to set the bound constraints:

Ib
ub

[ 0.5; 0.25 ];

[ 0.75; 0.5 ];

= Portfolio;

= setBounds(p, Ib, ub);
isp(p-NumAssets);
isp(p-LowerBound);
isp(p-UpperBound);

0 0 O0OT DT

2
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0.5000
0.2500

0.7500
0.5000

Setting Bounds Using the Portfolio Function or setBounds Function

Both the Portfolio function and setBounds function implement scalar expansion on
either the LowerBound or UpperBound properties. If the NumAssets property is already
set in the Portfolio object, scalar arguments for either property expand to have the same
value across all dimensions. In addition, setBounds lets you specify NumAssets as an
optional argument. Suppose that you have a universe of 500 assets and you want to set
common bound constraints on all assets in your universe. Specifically, you are a long-only
investor and want to hold no more than 5% of your portfolio in any single asset. You can
set these bound constraints in any of these equivalent ways:

p = Portfolio("NumAssets®, 500, “LowerBound®, 0, “"UpperBound®, 0.05);

or
p = Portfolio("NumAssets”®, 500);
p = setBounds(p, 0, 0.05);

or

p = Portfolio;

p = setBounds(p, 0, 0.05, 500);

To clear bound constraints from your Portfolio object, use either the Portfolio function
or setBounds with empty inputs for the properties to be cleared. For example, to clear
the upper-bound constraint from the Portfolio object p in the previous example:

p = Portfolio(p, “UpperBound®, [1):

Working with Budget Constraints Using Portfolio Object

The budget constraint is an optional linear constraint that maintains upper and
lower bounds on the sum of portfolio weights (see “Budget Constraints” on page 4-10).
Budget constraints have properties LowerBudget for the lower budget constraint and
UpperBudget for the upper budget constraint. If you set up a portfolio optimization
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problem that requires portfolios to be fully invested in your universe of assets, you can
set LowerBudget to be equal to UpperBudget. These budget constraints can be set
with default values equal to 1 using setDefaultConstraints (see “Setting Default
Constraints for Portfolio Weights Using Portfolio Object” on page 4-57).

Setting Budget Constraints Using the Portfolio Function

The properties for the budget constraint can also be set using the Portfol io function.
Suppose that you have an asset universe with many risky assets and a riskless asset and
you want to ensure that your portfolio never holds more than 1% cash, that is, you want
to ensure that you are 99-100% invested in risky assets. The budget constraint for this
portfolio can be set with:

p = Portfolio("LowerBudget®, 0.99, “UpperBudget®, 1);
disp(p-LowerBudget);
disp(p-UpperBudget);

0.9900

1
Setting Budget Constraints Using the setBudget Function

You can also set the properties for a budget constraint using setBudget. Suppose that
you have a fund that permits up to 10% leverage which means that your portfolio can be
from 100% to 110% invested in risky assets. Given a Portfolio object p, use setBudget to
set the budget constraints:

p Portfolio;

p = setBudget(p, 1, 1.1);
disp(p-LowerBudget);
disp(p-UpperBudget);

1

1.1000
If you were to continue with this example, then set the RiskFreeRate property to the
borrowing rate to finance possible leveraged positions. For details on the RiskFreeRate
property, see “Working with a Riskless Asset” on page 4-51. To clear either bound for
the budget constraint from your Portfolio object, use either the Portfolio function or
setBudget with empty inputs for the properties to be cleared. For example, clear the
upper-budget constraint from the Portfolio object p in the previous example with:
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p = Portfolio(p, "UpperBudget®, [1):;

Working with Group Constraints Using Portfolio Object

Group constraints are optional linear constraints that group assets together and enforce
bounds on the group weights (see “Group Constraints” on page 4-11). Although the
constraints are implemented as general constraints, the usual convention is to form

a group matrix that identifies membership of each asset within a specific group with
Boolean indicators (either true or false or with 1 or O) for each element in the group
matrix. Group constraints have properties GroupMatrix for the group membership
matrix, LowerGroup for the lower-bound constraint on groups, and UpperGroup for the
upper-bound constraint on groups.

Setting Group Constraints Using the Portfolio Function

The properties for group constraints are set through the Portfolio function. Suppose
that you have a portfolio of five assets and want to ensure that the first three assets
constitute no more than 30% of your portfolio, then you can set group constraints:

G [111001;

p Portfolio("GroupMatrix®, G, “UpperGroup®, 0.3);
disp(p-NumAssets);

disp(p-GroupMatrix);

disp(p-UpperGroup);

5
1 1 1 0 0
0.3000

The group matrix G can also be a logical matrix so that the following code achieves the
same result.

G = [ true true true false false ];

p = Portfolio("GroupMatrix®, G, “UpperGroup®, 0.3);
disp(p-NumAssets);

disp(p-GroupMatrix);

disp(p-UpperGroup);

5

1 1 1 0 0
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0.3000
Setting Group Constraints Using the setGroups and addGroups Functions

You can also set the properties for group constraints using setGroups. Suppose that you
have a portfolio of five assets and want to ensure that the first three assets constitute

no more than 30% of your portfolio. Given a Portfolio object p, use setGroups to set the
group constraints:

G = [ true true true false false ];
p = Portfolio;
p = setGroups(p, G, [], 0-3);

disp(p-NumAssets);
disp(p-GroupMatrix);
disp(p.UpperGroup);

5

1 1 1 0 0

0.3000

In this example, you would set the LowerGroup property to be empty ([]).

Suppose you want to add another group constraint to make odd-numbered assets
constitute at least 20% of your portfolio. Set up an augmented group matrix and
introduce infinite bounds for unconstrained group bounds or use the addGroups function
to build up group constraints. For this example, create another group matrix for the
second group constraint:

p = Portfolio;

G = [ true true true false false ]; % group matrix for first group constraint
p = setGroups(p, G, [1, 0.3);

G = [ true false true false true ]; % group matrix for second group constraint

= addGroups(p, G, 0.2);
disp(p-NumAssets);
disp(p.GroupMatrix);
disp(p.LowerGroup);
disp(p.UpperGroup);

o
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0.2000

0.3000

Inf
addGroups determines which bounds are unbounded so you only need to focus on the
constraints that you want to set.

The Portfolio function and setGroups and addGroups implement scalar expansion
on either the LowerGroup or UpperGroup properties based on the dimension of the
group matrix in the property GroupMatrix. Suppose that you have a universe of 30
assets with 6 asset classes such that assets 1-5, assets 6-12, assets 13—18, assets 19-22,
assets 23—27, and assets 28—-30 constitute each of your 6 asset classes and you want each
asset class to fall from 0% to 25% of your portfolio. Let the following group matrix define
your groups and scalar expansion define the common bounds on each group:

p = Portfolio;

G = blkdiag(true(1,5), true(1,7), true(1,6), true(1,4), true(l,5), true(l,3));

p = setGroups(p, G, 0, 0.25);

disp(p-NumAssets);

disp(p-GroupMatrix);

disp(p-LowerGroup);
disp(p-UpperGroup);

30

Columns 1 through 16

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 (0]
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Columns 17 through 30

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1

0

0

0

0

0

0
0.2500
0.2500
0.2500
0.2500
0.2500
0.2500
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Working with Group Ratio Constraints Using Porifolio Object

Group ratio constraints are optional linear constraints that maintain bounds on
proportional relationships among groups of assets (see “Group Ratio Constraints” on
page 4-12). Although the constraints are implemented as general constraints, the usual
convention is to specify a pair of group matrices that identify membership of each asset
within specific groups with Boolean indicators (either true or false or with 1 or 0)

for each element in each of the group matrices. The goal is to ensure that the ratio of a
base group compared to a comparison group fall within specified bounds. Group ratio
constraints have properties:

*  GroupA for the base membership matrix

*  GroupB for the comparison membership matrix

+ LowerRatio for the lower-bound constraint on the ratio of groups
* UpperRatio for the upper-bound constraint on the ratio of groups

Setting Group Ratio Constraints Using the Portfolio Function

The properties for group ratio constraints are set using the Portfol io function. For
example, assume that you want the ratio of financial to nonfinancial companies in your
portfolios to never go above 50%. Suppose that you have six assets with three financial
companies (assets 1-3) and three nonfinanical companies (assets 4—6). To set group ratio
constraints:

GA=[1110001]
GB [0OOO111]
p = Portfolio("GroupA®,
disp(p-NumAssets);
disp(p-GroupA);
disp(p-GroupB);
disp(p-UpperRatio);

; % Financial companies
; % nonfinancial companies
®, GA, "GroupB®", GB, "UpperRatio®, 0.5);

6

1 1 1 0 0 0
0 0 0 1 1 1
0.5000

Group matrices GA and GB in this example can be logical matrices with true and false
elements that yield the same result:

GA
GB

[ true true true false false false ]; % financial companies
[ false false false true true true ]; % nonfinancial companies
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p = Portfolio("GroupA®, GA, "GroupB", GB, "UpperRatio”, 0.5);
disp(p-NumAssets);

disp(p-GroupA);

disp(p-GroupB);

disp(p-UpperRatio);

6

1 1 1 0 0 0
0 0 0 1 1 1
0.5000

Setting Group Ratio Constraints Using the setGroupRatio and addGroupRatio Functions

You can also set the properties for group ratio constraints using setGroupRatio. For
example, assume that you want the ratio of financial to nonfinancial companies in your
portfolios to never go above 50%. Suppose that you have six assets with three financial
companies (assets 1-3) and three nonfinanical companies (assets 4-6). Given a Portfolio
object p, use setGroupRatio to set the group constraints:

GA = [ true true true false false false ]; % financial companies
GB = [ false false false true true true ]; % nonfinancial companies
p Portfolio;

p = setGroupRatio(p, GA, GB, [1, 0.5);
disp(p-NumAssets);

disp(p-GroupA);

disp(p-GroupB);

disp(p-UpperRatio);

6

1 1 1 0 0 0
0 0 0 1 1 1
0.5000

In this example, you would set the LowerRatio property to be empty ([ ).

Suppose that you want to add another group ratio constraint to ensure that the weights
in odd-numbered assets constitute at least 20% of the weights in nonfinancial assets your
portfolio. You can set up augmented group ratio matrices and introduce infinite bounds
for unconstrained group ratio bounds, or you can use the addGroupRatio function to
build up group ratio constraints. For this example, create another group matrix for the
second group constraint:

p = Portfolio;
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GA [ true true true false false false ]; % financial companies
GB [ false false false true true true ]; % nonfinancial companies
p = setGroupRatio(p, GA, GB, [], 0.5);

GA [ true false true false true false ]; % odd-numbered companies
GB [ false false false true true true ]; % nonfinancial companies
p = addGroupRatio(p, GA, GB, 0.2);

disp(p-NumAssets);
disp(p-GroupA);
disp(p-GroupB);
disp(p-LowerRatio);
disp(p-UpperRatio);

6
1 1 1 0 0 0
1 0 1 0 1 0
0 0 0 1 1 1
0 0 0 1 1 1
-Inf
0.2000
0.5000
Inf

Notice that addGroupRatio determines which bounds are unbounded so you only need
to focus on the constraints you want to set.

The Portfolio function, setGroupRatio, and addGroupRatio implement scalar
expansion on either the LowerRatio or UpperRatio properties based on the dimension
of the group matrices in GroupA and GroupB properties.

Working with Linear Equality Constraints Using Portfolio Object

Linear equality constraints are optional linear constraints that impose systems of
equalities on portfolio weights (see “Linear Equality Constraints” on page 4-9). Linear
equality constraints have properties AEqual i ty, for the equality constraint matrix, and
bEquality, for the equality constraint vector.

Setting Linear Equality Constraints Using the Portfolio Function

The properties for linear equality constraints are set using the Portfol io function.
Suppose that you have a portfolio of five assets and want to ensure that the first three
assets are 50% of your portfolio. To set this constraint:

4-69



4 Mean-Variance Portfolio Optimization Tools

4-70

[111001];

0.5;

Portfolio("AEquality”, A, "bEquality®, b);
isp(p-NumAssets);

isp(p-AEquality);

isp(p-bEquality);

00T T >
w oo

(¢)]

1 1 1 0 0

0.5000
Setting Linear Equality Constraints Using the setEquality and addEquality Functions

You can also set the properties for linear equality constraints using setEquality.
Suppose that you have a portfolio of five assets and want to ensure that the first three
assets are 50% of your portfolio. Given a Portfolio object p, use setEqual ity to set the
linear equality constraints:

A=[L[111007];

b = 0.5;

p = Portfolio;

p = setkEquality(p, A, b);
disp(p-NumAssets);
disp(p-AEquality);
disp(p-bEquality);

5

1 1 1 0 0
0.5000

Suppose that you want to add another linear equality constraint to ensure that the last

three assets also constitute 50% of your portfolio. You can set up an augmented system

of linear equalities or use addEqual ity to build up linear equality constraints. For this
example, create another system of equalities:

Portfolio;

[111001]; % First equality constraint
0.5;

setEquality(p, A, b);

T T >0
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A=[001111]; % second equality constraint
b = 0.5;

p = addeEquality(p, A, b);
disp(p-NumAssets);
disp(p-AEquality);
disp(p-bEquality);

5

1 1 1 0 0
0 0 1 1 1
0.5000

0.5000

The Portfolio function, setEqual ity, and addEqual ity implement scalar expansion
on the bEqual ity property based on the dimension of the matrix in the AEqual ity
property.

Working with Linear Inequality Constraints Using Portfolio Object

Linear inequality constraints are optional linear constraints that impose systems of
inequalities on portfolio weights (see “Linear Inequality Constraints” on page 4-8).
Linear inequality constraints have properties Alnequal ity for the inequality constraint
matrix, and bInequal ity for the inequality constraint vector.

Setting Linear Inequality Constraints Using the Portfolio Function

The properties for linear inequality constraints are set using the Portfol io function.
Suppose that you have a portfolio of five assets and you want to ensure that the first
three assets are no more than 50% of your portfolio. To set up these constraints:

A=[111001];
b =0.5;
p = Portfolio("Alnequality”, A, “blnequality”, b);

disp(p-NumAssets);
disp(p-Alnequality);
disp(p-blnequality);

5

1 1 1 0 0
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0.5000
Setting Linear Inequality Constraints Using the setlnequality and addinequality Functions

You can also set the properties for linear inequality constraints using setlnequality.
Suppose that you have a portfolio of five assets and you want to ensure that the first
three assets constitute no more than 50% of your portfolio. Given a Portfolio object p, use
setlnequal ity to set the linear inequality constraints

A=[1110017];

b = 0.5;

p = Portfolio;

p = setlnequality(p, A, b);
disp(p-NumAssets);
disp(p-Alnequality);
disp(p-blnequality);

5

1 1 1 0 0
0.5000

Suppose that you want to add another linear inequality constraint to ensure that the
last three assets constitute at least 50% of your portfolio. You can set up an augmented
system of linear inequalities or use the add Inequal ity function to build up linear
inequality constraints. For this example, create another system of inequalities:

Portfolio;

[111001]; % First inequality constraint
0.5;

setlnequality(p, A, b);

[00-1-1-117; % second inequality constraint
-0.5;
addlnequality(p, A, b);

isp(p-NumAssets);
isp(p-Alnequality);
isp(p-blnequality);
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1 1 1 0 0
0 0 -1 -1 -1
0.5000

-0.5000

The Portfolio function, setlnequality, and addInequal ity implement scalar
expansion on the blnequal ity property based on the dimension of the matrix in the
Alnequal ity property.

Working with Average Turnover Constraints Using Porifolio Object

The turnover constraint is an optional linear absolute value constraint (see “Average
Turnover Constraints” on page 4-12) that enforces an upper bound on the average of
purchases and sales. The turnover constraint can be set using the Portfol io function
or the setTurnover function. The turnover constraint depends on an initial or current
portfolio, which is assumed to be zero if not set when the turnover constraint is set. The
turnover constraint has properties Turnover, for the upper bound on average turnover,
and InitPort, for the portfolio against which turnover is computed.

Setting Average Turnover Constraints Using the Portfolio Function

The properties for the turnover constraints are set using the Portfol io function.
Suppose that you have an initial portfolio of 10 assets in a variable X0 and you want to
ensure that average turnover is no more than 30%. To set this turnover constraint:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = Portfolio("Turnover®, 0.3, "InitPort”, x0);

disp(p-NumAssets);

disp(p-Turnover);
disp(p-InitPort);

10

o

-3000

-1200
-0900
-0800
-0700
-1000
-1000
-1500
-1100

cNeoNoNoNoNoNoNe]
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0.0800

0.1000

Note if the NumAssets or InitPort properties are not set before or when the turnover
constraint is set, various rules are applied to assign default values to these properties
(see “Setting Up an Initial or Current Portfolio” on page 4-35).

Setting Average Turnover Constraints Using the sefTurnover Function

You can also set properties for portfolio turnover using setTurnover to specify both
the upper bound for average turnover and an initial portfolio. Suppose that you have an
initial portfolio of 10 assets in a variable X0 and want to ensure that average turnover
is no more than 30%. Given a Portfolio object p, use setTurnover to set the turnover
constraint with and without the initial portfolio being set previously:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 1;

p Portfolio(" InitPort™, x0);
p = setTurnover(p, 0.3);

disp(p-NumAssets);
disp(p-Turnover);
disp(p-InitPort);

10

o

-3000

-1200
-0900
-0800
-0700
-1000
-1000
-1500
-1100
-0800
-1000

[eNeoNoNoNoNoNoNeoNeNe

or

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = Portfolio;

p = setTurnover(p, 0.3, x0);

disp(p-NumAssets);

disp(p-Turnover);

disp(p-InitPort);

10
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o

-3000

-1200
-0900
-0800
-0700
-1000
-1000
-1500
-1100
-0800
-1000

eNeoNoNoNoNoNeoNeoNeNe

setTurnover implements scalar expansion on the argument for the initial portfolio.
If the NumAssets property is already set in the Portfolio object, a scalar argument

for InitPort expands to have the same value across all dimensions. In addition,
setTurnover lets you specify NumAssets as an optional argument. To clear turnover
from your Portfolio object, use the Portfol io function or setTurnover with empty
inputs for the properties to be cleared.

Working with One-way Turnover Constraints Using Portfolio Object

One-way turnover constraints are optional constraints (see “One-way Turnover
Constraints” on page 4-13) that enforce upper bounds on net purchases or net sales.
One-way turnover constraints can be set using the Portfol io function or the
setOneWayTurnover function. One-way turnover constraints depend upon an initial or
current portfolio, which is assumed to be zero if not set when the turnover constraints are
set. One-way turnover constraints have properties BuyTurnover, for the upper bound on
net purchases, SelITurnover, for the upper bound on net sales, and InitPort, for the
portfolio against which turnover is computed.

Setting One-way Turnover Constraints Using the Portfolio Function

The Properties for the one-way turnover constraints are set using the Portfolio
function. Suppose that you have an initial portfolio with 10 assets in a variable x0 and
you want to ensure that turnover on purchases is no more than 30% and turnover on
sales is no more than 20% of the initial portfolio. To set these turnover constraints:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = Portfolio("BuyTurnover®, 0.3, "SellTurnover®, 0.2, "InitPort”, x0);

disp(p-NumAssets);
disp(p-BuyTurnover);
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disp(p-SellTurnover);
disp(p-InitPort);

10

0.3000

0.2000

.1200
.0900
.0800
.0700
.1000
.1000
.1500
.1100
.0800
.1000

[eNeoNoNoNoNoNoNoNeoNe

If the NumAssets or InitPort properties are not set before or when the turnover
constraint is set, various rules are applied to assign default values to these properties
(see “Setting Up an Initial or Current Portfolio” on page 4-35).

Setting Turnover Constraints Using the setOneWayTurnover Function

You can also set properties for portfolio turnover using setOneWayTurnover to specify
the upper bounds for turnover on purchases (BuyTurnover) and sales (Sel I Turnover)
and an initial portfolio. Suppose that you have an initial portfolio of 10 assets in a
variable X0 and want to ensure that turnover on purchases is no more than 30% and that
turnover on sales is no more than 20% of the initial portfolio. Given a Portfolio object p,
use setOneWayTurnover to set the turnover constraints with and without the initial
portfolio being set previously:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p Portfolio("InitPort”, x0);
p = setOneWayTurnover(p, 0.3, 0.2);

disp(p-NumAssets);
disp(p-BuyTurnover);
disp(p-SellTurnover);
disp(p-InitPort);

10

0.3000
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cNeoNoNoNoNoNoNeoNoNe

or

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
p = Portfolio;

p = setOneWayTurnover(p, 0.3, 0.2, x0);

disp(p-NumAssets);

disp(p-BuyTurnover);

disp(p-SellTurnover);

disp(p-InitPort);

10

0.3000

o

.2000

.1200
.0900
.0800
.0700
.1000
.1000
.1500
.1100
.0800
.1000

cNeoNoNoNoloNoNeoNoNe)

setOneWayTurnover implements scalar expansion on the argument for the initial
portfolio. If the NumAssets property is already set in the Portfolio object, a scalar
argument for InitPort expands to have the same value across all dimensions. In
addition, setOneWayTurnover lets you specify NumAssets as an optional argument.
To remove one-way turnover from your Portfolio object, use the Portfolio function or
setOneWayTurnover with empty inputs for the properties to be cleared.
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Working with Tracking Error Constraints Using Portfolio Object

Tracking error constraints are optional constraints (see “Tracking Error Constraints”
on page 4-14) that measure the risk relative to a portfolio called a tracking portfolio.
Tracking error constraints can be set using the Portfolio function or the
setTrackingError function.

The tracking error constraint is an optional quadratic constraint that enforces an upper
bound on tracking error, which is the relative risk between a portfolio and a designated
tracking portfolio. For more information, see “T'racking Error Constraints” on page 4-14.

The tracking error constraint can be set using the Portfolio function or the
setTrackingPort and setTrackingError functions. The tracking error constraint
depends on a tracking portfolio, which is assumed to be zero if not set when the tracking
error constraint is set. The tracking error constraint has properties TrackingError, for
the upper bound on tracking error, and TrackingPort, for the portfolio against which
tracking error is computed.

Note: The initial portfolio in the Portfolio object property InitPort is distinct from the
tracking portfolio in the Portfolio object property TrackingPort.

Setting Tracking Error Constraints Using the Portfolio Function

The properties for the tracking error constraints are set using the Portfolio function.
Suppose that you have a tracking portfolio of 10 assets in a variable x0 and you want to
ensure that the tracking error of any portfolio on the efficient frontier is no more than 8%
relative to this portfolio. To set this constraint:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 1;

p = Portfolio("TrackingError®, 0.08, "TrackingPort®, x0);

disp(p-.NumAssets);

disp(p-TrackingError);
disp(p-TrackingPort);

10
0.0800
0.1200
0.0900

0.0800
0.0700
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-1000
-1000
-1500
-1100
-0800
-1000

eNeoNoNoNeoNe]

Note that if the NumAssets or TrackingPort properties are not set before or when the
tracking error constraint is set, various rules are applied to assign default values to these
properties (see “Setting Up a Tracking Portfolio” on page 4-37).

Setting Tracking Error Constraints Using the setTrackingError Function

You can also set properties for portfolio tracking error using the setTrackingError
function to specify both the upper bound for tracking error and a designated tracking
portfolio. Suppose that you have a tracking portfolio of 10 assets in a variable x0 and
want to ensure that tracking error is no more than 8%. Given a Portfolio object p, use
setTrackingError to set the tracking error constraint with and without the initial
portfolio being set previously:

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];

p = Portfolio("TrackingPort®, x0);
p = setTrackingError(p, 0.08);

disp(p-NumAssets);
disp(p-TrackingError);
disp(p-TrackingPort);

10

o

-0800

-1200
-0900
-0800
-.0700
-1000
-1000
-1500
-1100
-0800
-1000

eNeoNoNoNoNoNoNeoNeoNel

or

x0 = [ 0.12; 0.09; 0.08; 0.07; 0.1; 0.1; 0.15; 0.11; 0.08; 0.1 ];
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p = Portfolio( " TrackingPort®, x0);
p = setTrackingError(p, 0.08, x0);

disp(p-NumAssets);
disp(p-TrackingError);
disp(p-TrackingPort);

10

o

.0800

.1200
.0900
.0800
.0700
.1000
.1000
.1500
.1100
.0800
.1000

[eNeoNoNoNoNoNoNoNeoNe

Note that if the NumAssets or TrackingPort properties are not set before or when the
tracking error constraint is set, various rules are applied to assign default values to these
properties (see “Setting Up a Tracking Portfolio” on page 4-37).

setTrackingError implements scalar expansion on the argument for the tracking
portfolio. If the NumAssets property is already set in the Portfolio object, a scalar
argument for TrackingPort expands to have the same value across all dimensions.
In addition, setTrackingError lets you specify NumAssets as an optional argument.
To clear tracking error from your Portfolio object, use the Portfolio function or
setTrackingError with empty inputs for the properties to be cleared.

See Also

Portfolio | setBounds | setBudget | setDefaultConstraints | setEquality
| setGroupRatio | setGroups | setlnequality | setOneWayTurnover |
setTrackingError | setTrackingPort | setTurnover

Related Examples

. “Creating the Portfolio Object” on page 4-24

. “Validate the Portfolio Problem for Portfolio Object” on page 4-82
. “Estimate Efficient Portfolios for Portfolio Object” on page 4-87
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. “Estimate Efficient Frontiers for Portfolio Object” on page 4-99
. “Asset Allocation Case Study” on page 4-142
. “Portfolio Optimization Examples” on page 4-114

More About

. “Portfolio Object” on page 4-19

. “Portfolio Optimization Theory” on page 4-2

. “Portfolio Object Workflow” on page 4-17

. “Setting Up a Tracking Portfolio” on page 4-37

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)
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Validate the Porifolio Problem for Portfolio Object

4-82

In this section...
“Validating a Portfolio Set” on page 4-82
“Validating Portfolios” on page 4-84

In some cases, you may want to validate either your inputs to, or outputs from, a
portfolio optimization problem. Although most error checking that occurs during the
problem setup phase catches most difficulties with a portfolio optimization problem, the
processes to validate portfolio sets and portfolios are time consuming and are best done
offline. So, the portfolio optimization tools have specialized functions to validate portfolio
sets and portfolios. For information on the workflow when using Portfolio objects, see
“Portfolio Object Workflow” on page 4-17.

Validating a Portfolio Set

Since it is necessary and sufficient that your portfolio set must be a nonempty, closed,
and bounded set to have a valid portfolio optimization problem, the estimateBounds
function lets you examine your portfolio set to determine if it is nonempty and, if
nonempty, whether it is bounded. Suppose that you have the following portfolio set which
is an empty set because the initial portfolio at O is too far from a portfolio that satisfies
the budget and turnover constraint:

p
p

Portfolio("NumAssets®, 3, "Budget®, 1);
setTurnover(p, 0.3, 0);

If a portfolio set is empty, estimateBounds returns NaN bounds and sets the
isbounded flag to []:

[Ib, ub, isbounded] = estimateBounds(p)
Ib =

NaN

NaN

NaN
ub =

NaN
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NaN
NaN

isbounded =

L1

Suppose that you create an unbounded portfolio set as follows:

p = Portfolio("Alnequality®, [1 -1; 1 1 ], “blnequality”, 0);
[Ib, ub, isbounded] = estimateBounds(p)

Ib =

-Inf
-Inf

ub =
1.0e-008 *

-0.3712
Inf

isbounded =

0
In this case, estimateBounds returns (possibly infinite) bounds and sets the
isbounded flag to false. The result shows which assets are unbounded so that you can
apply bound constraints as necessary.

Finally, suppose that you created a portfolio set that is both nonempty and bounded.
estimateBounds not only validates the set, but also obtains tighter bounds which are
useful if you are concerned with the actual range of portfolio choices for individual assets
in your portfolio set:

p = Portfolio;
p = setBudget(p, 1,1);
p = setBounds(p, [ -0.1; 0.2; 0.3; 0.2 ], [ 0.5; 0.3; 0.9; 0.8 ]);

[1b, ub, isbounded] = estimateBounds(p)

Ib =

-0.1000
0.2000
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-3000
-2000

oNe)

ub =

-3000
-3000
.7000
-6000

oNeoNoNe)

isbounded =
1

In this example, all but the second asset has tighter upper bounds than the input upper
bound implies.

Validating Portfolios

Given a portfolio set specified in a Portfolio object, you often want to check if specific
portfolios are feasible with respect to the portfolio set. This can occur with, for
example, initial portfolios and with portfolios obtained from other procedures. The
checkFeasibility function determines whether a collection of portfolios is feasible.
Suppose that you perform the following portfolio optimization and want to determine if
the resultant efficient portfolios are feasible relative to a modified problem.

First, set up a problem in the Portfolio object p, estimate efficient portfolios in pwgt, and
then confirm that these portfolios are feasible relative to the initial problem:

m
C

[ 0.05; 0.1; 0.12; 0.18 1;

[ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

Portfolio;
setAssetMoments(p, m, C);
setDefaultConstraints(p);
wgt = estimateFrontier(p);

p
p
p
p

checkFeasibility(p, pwgt)

ans =
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1 1 1 1 1 1 1 1 1 1

Next, set up a different portfolio problem that starts with the initial problem with an
additional a turnover constraint and an equally weighted initial portfolio:

g = setTurnover(p, 0.3, 0.25);
checkFeasibility(q, pwgt)

ans =

0 0 0 1 1 0 0 0 0 0
In this case, only two of the 10 efficient portfolios from the initial problem are feasible
relative to the new problem in Portfolio object g. Solving the second problem using
checkFeasibility demonstrates that the efficient portfolio for Portfolio object q is
feasible relative to the initial problem:

gqwgt = estimateFrontier(q);
checkFeasibility(p, qwgt)

ans =

See Also

checkFeasibility | estimateBounds | Portfolio

Related Examples

. “Creating the Portfolio Object” on page 4-24

. “Working with Portfolio Constraints” on page 4-57

. “Estimate Efficient Portfolios for Portfolio Object” on page 4-87
. “Estimate Efficient Frontiers for Portfolio Object” on page 4-99
. “Asset Allocation Case Study” on page 4-142

. “Portfolio Optimization Examples” on page 4-114

More About
. “Portfolio Object” on page 4-19
. “Portfolio Optimization Theory” on page 4-2
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. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)

4-86


http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html

Estimate Efficient Portfolios for Portfolio Object

Estimate Efficient Porifolios for Portfolio Object

In this section...

“Obtaining Portfolios Along the Entire Efficient Frontier” on page 4-87
“Obtaining Endpoints of the Efficient Frontier” on page 4-88
“Obtaining Efficient Portfolios for Target Returns” on page 4-90
“Obtaining Efficient Portfolios for Target Risks” on page 4-93
“Efficient Portfolio That Maximizes Sharpe Ratio” on page 4-95

“Choosing and Controlling the Solver” on page 4-97

There are two ways to look at a portfolio optimization problem that depends on what you
are trying to do. One goal is to estimate efficient portfolios and the other is to estimate
efficient frontiers. This section focuses on the former goal and “Estimate Efficient
Frontiers for Portfolio Object” on page 4-99 focuses on the latter goal. For information
on the workflow when using Portfolio objects, see “Portfolio Object Workflow” on page
4-17.

Obtaining Portfolios Along the Entire Efficient Frontier

The most basic way to obtain optimal portfolios is to obtain points over the entire range
of the efficient frontier. Given a portfolio optimization problem in a Portfolio object, the
estimateFrontier function computes efficient portfolios spaced evenly according to
the return proxy from the minimum to maximum return efficient portfolios. The number
of portfolios estimated is controlled by the hidden property defaultNumPorts which is
set to 10. A different value for the number of portfolios estimated is specified as input to
estimateFrontier. This example shows the default number of efficient portfolios over
the entire range of the efficient frontier:

m=1[0.05; 0.1; 0.12; 0.18 1;

C [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontier(p);
disp(pwgt);
0.8891 0.7215 0.5540 0.3865 0.2190 0.0515 0 0 0 0
0.0369 0.1289 0.2209 0.3129 0.4049 0.4969 0.4049 0.2314 0.0579 0
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0.0404 0.0567 0.0730 0.0893 0.1056 0.1219 0.1320 0.1394 0.1468 0
0.0336 0.0929 0.1521 0.2113 0.2705 0.3297 0.4630 0.6292 0.7953 1.0000

If you want only four portfolios in the previous example:

pwgt = estimateFrontier(p, 4);

disp(pwgt);
0.8891 0.3865 0 0
0.0369 0.3129 0.4049 0
0.0404 0.0893 0.1320 0

0.0336 0.2113 0.4630 1.0000

Starting from the initial portfolio, estimateFrontier also returns purchases and sales
to get from your initial portfolio to each efficient portfolio on the efficient frontier. For
example, given an initial portfolio in pwgtO, you can obtain purchases and sales:

pwgtO0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setlnitPort(p, pwgtO);
[pwgt, pbuy, psell] = estimateFrontier(p);

display(pwgt);

display(pbuy);

display(psell);

pwgt =

0.8891 0.7215 0.5540 0.3865 0.2190 0.0515 0 0] 0 0

0.0369 0.1289 0.2209 0.3129 0.4049 0.4969 0.4049 0.2314 0.0579 0

0.0404 0.0567 0.0730 0.0893 0.1056 0.1219 0.1320 0.1394 0.1468 0

0.0336 0.0929 0.1521 0.2113 0.2705 0.3297 0.4630 0.6292 0.7953 1.0000

pbuy =

0.5891 0.4215 0.2540 0.0865 0 0 0 0] 0 0
0 0 0 0.0129 0.1049 0.1969 0.1049 0] 0 0
0 0 0 0 0 0 0 0] 0 0
0 0 0.0521 0.1113 0.1705 0.2297 0.3630 0.5292 0.6953 0.9000

psell =

0] 0 0 0 0.0810 0.2485 0.3000 0.3000 0.3000 0.3000

0.2631 0.1711 0.0791 0 0 0 0 0.0686 0.2421 0.3000

0.1596 0.1433 0.1270 0.1107 0.0944 0.0781 0.0680 0.0606 0.0532 0.2000

0.0664 0.0071 0 0 0 0 0 0] 0 0

If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is O.

Obtaining Endpoints of the Efficient Frontier

In many cases, you might be interested in the endpoint portfolios for the efficient
frontier. Suppose that you want to determine the range of returns from minimum
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to maximum to refine a search for a portfolio with a specific target return. Use the
estimateFrontierLimits function to obtain the endpoint portfolios:

m
C

[ 0.05; 0.1; 0.12; 0.18 1;

[ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

p Portfolio;

p = setAssetMoments(p, m, C);

p setDefaultConstraints(p);
pwgt = estimateFrontierLimits(p);
di

sp(pwgt);

0.8891 0

0.0369 0

0.0404 0

0.0336 1.0000

The estimatePortMoments function shows the range of risks and returns for efficient
portfolios:

[prsk, pret] = estimatePortMoments(p, pwgt);
disp([prsk, pret]);

0.0769 0.0590
0.3500 0.1800

Starting from an initial portfolio, estimateFrontierLimits also returns purchases
and sales to get from the initial portfolio to the endpoint portfolios on the efficient
frontier. For example, given an initial portfolio in pwgt0, you can obtain purchases and
sales:

m= [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0O;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

p = Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);
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pwgtO = [ 0.3; 0.3; 0.2; 0.1 ];
p = setlnitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateFrontierLimits(p);

display(pwgt);
display(pbuy);
display(psell);

pwgt =

0.8891
0.0369
0.0404
0.0336 1.000

pbuy =

0.5891
0
0
0 0.900

psell =

0 0.3000
0.2631 0.3000
0.1596 0.2000
0.0664 0
If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is O.

Obtaining Efficient Portfolios for Target Returns

To obtain efficient portfolios that have targeted portfolio returns, the
estimateFrontierByReturn function accepts one or more target portfolios returns
and obtains efficient portfolios with the specified returns. For example, assume that you
have a universe of four assets where you want to obtain efficient portfolios with target
portfolio returns of 6%, 9%, and 12%:

m
C

[ 0.05; 0.1; 0.12; 0.18 ];

[ 0.0064 0.00408 0.00192 O;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
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0 0.0119 0.0336 0.1225 ];

Portfolio;

= setAssetMoments(p, m, C);

= setDefaultConstraints(p);

pwgt = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]);

T T DO

display(pwgt);
pwgt =

0.8772 0.5032 0.1293
0.0434 0.2488 0.4541
0.0416 0.0780 0.1143
0.0378 0.1700 0.3022

In some cases, you can request a return for which no efficient portfolio exists. Based on
the previous example, suppose that you want a portfolio with a 5% return (which is the
return of the first asset). A portfolio that is fully invested in the first asset, however,

is inefficient. estimateFrontierByReturn warns if your target returns are outside
the range of efficient portfolio returns and replaces it with the endpoint portfolio of the
efficient frontier closest to your target return:

m
[

[ 0.05; 0.1; 0.12; 0.18 ];

[ 0.0064 0.00408 0.00192 O;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

= Portfolio;

= setAssetMoments(p, m, C);

= setDefaultConstraints(p);

pwgt = estimateFrontierByReturn(p, [0.05, 0.09, 0.12]);

T T T

display(pwgt);

Warning: One or more target return values are outside the feasible range [ 0.0590468, 0.18 ].
Will return portfolios associated with endpoints of the range for these values.
> In Portfolio.estimateFrontierByReturn at 70

pwgt =

0.8891 0.5032 0.1293
0.0369 0.2488 0.4541
0.0404 0.0780 0.1143
0.0336 0.1700 0.3022

The best way to avoid this situation is to bracket your target portfolio returns with
estimateFrontierLimits and estimatePortReturn (see “Obtaining Endpoints of
the Efficient Frontier” on page 4-88 and “Obtaining Portfolio Risks and Returns” on
page 4-99).
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pret = estimatePortReturn(p, p-estimateFrontierLimits);
display(pret);
pret =

0.0590
0.1800

This result indicates that efficient portfolios have returns that range between 5.9% and
18%.

If you have an initial portfolio, estimateFrontierByReturn also returns purchases
and sales to get from your initial portfolio to the target portfolios on the efficient frontier.
For example, given an initial portfolio in pwgtO, to obtain purchases and sales with
target returns of 6%, 9%, and 12%:

pwgtO0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setlnitPort(p, pwgtO);
[pwgt, pbuy, psell] = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]);

display(pwgt);
display(pbuy);
display(psell);

pwgt =
0.8772 0.5032 0.1293
0.0434 0.2488 0.4541
0.0416 0.0780 0.1143
0.0378 0.1700 0.3022

pbuy =
0.5772 0.2032 0
0 0 0.1541
0 0 0
0 0.0700 0.2022

psell =
0 0 0.1707
0.2566 0.0512 0
0.1584 0.1220 0.0857
0.0622 0 0

If you do not have an initial portfolio, the purchase and sale weights assume that your
initial portfolio is O.
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Obtaining Efficient Portfolios for Target Risks

To obtain efficient portfolios that have targeted portfolio risks, the
estimateFrontierByRisk function accepts one or more target portfolio risks and
obtains efficient portfolios with the specified risks. Suppose that you have a universe of
four assets where you want to obtain efficient portfolios with target portfolio risks of 12%,
14%, and 16%.

m
C

[ 0.05; 0.1; 0.12; 0.18 ];

[ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

p Portfolio;

p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

pwgt = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]);
di

splay(pwgt) ;
pwgt =

0.3984 0.2659 0.1416
0.3064 0.3791 0.4474
0.0882 0.1010 0.1131
0.2071 0.2540 0.2979

In some cases, you can request a risk for which no efficient portfolio exists. Based on

the previous example, suppose that you want a portfolio with 7% risk (individual assets
in this universe have risks ranging from 8% to 35%). It turns out that a portfolio with
7% risk cannot be formed with these four assets. estimateFrontierByRisk warns if
your target risks are outside the range of efficient portfolio risks and replaces it with the
endpoint of the efficient frontier closest to your target risk:

pwgt = estimateFrontierByRisk(p, 0.07)

Warning: One or more target risk values are outside the feasible range [ 0.0769288, 0.35 ].
Will return portfolios associated with endpoints of the range for these values.
> In Portfolio.estimateFrontierByRisk at 82

pwgt =
0.8891
0.0369

0.0404
0.0336
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The best way to avoid this situation is to bracket your target portfolio risks with
estimateFrontierLimits and estimatePortRisk (see “Obtaining Endpoints of the
Efficient Frontier” on page 4-88 and “Obtaining Portfolio Risks and Returns” on page
4-99).

prsk = estimatePortRisk(p, p.estimateFrontierLimits);
display(prsk);
prsk =

0.0769
0.3500

This result indicates that efficient portfolios have risks that range from 7.7% to 35%.

Starting with an initial portfolio, estimateFrontierByRisk also returns purchases
and sales to get from your initial portfolio to the target portfolios on the efficient frontier.
For example, given an initial portfolio in pwgtO, you can obtain purchases and sales from
the example with target risks of 12%, 14%, and 16%:

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = setlnitPort(p, pwgtO);
[pwgt, pbuy, psell] = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]1);

display(pwgt);
display(pbuy);
display(psell);
pwgt =
0.3984 0.2659 0.1416
0.3064 0.3791 0.4474
0.0882 0.1010 0.1131
0.2071 0.2540 0.2979
pbuy =
0.0984 0 0
0.0064 0.0791 0.1474
0 0 0

0.1071 0.1540 0.1979

psell =
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0 0.0341 0.1584

0 0 0
0.1118 0.0990 0.0869
0 0 0

If you do not specify an initial portfolio, the purchase and sale weights assume that your
initial portfolio is O.

Efficient Portfolio That Maximizes Sharpe Ratio

The Sharpe ratio is defined as the ratio

Wx)—ry

DE

where x€ R" and ry is the risk-free rate (u and X proxies for portfolio return and risk).
For more information, see “Portfolio Optimization Theory” on page 4-2.

Portfolios that maximize the Sharpe ratio are portfolios on the efficient frontier that
satisfy a number of theoretical conditions in finance. For example, such portfolios are
called tangency portfolios since the tangent line from the risk-free rate to the efficient
frontier touches the efficient frontier at portfolios that maximize the Sharpe ratio.

To obtain efficient portfolios that maximizes the Sharpe ratio, the
estimateMaxSharpeRatio function accepts a Portfolio object and obtains efficient
portfolios that maximize the Sharpe Ratio.

Suppose that you have a universe with four risky assets and a riskless asset and you
want to obtain a portfolio that maximizes the Sharpe ratio, where, in this example, ry is
the return for the riskless asset.

ro = 0.03;
m= [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

Portfolio("RiskFreeRate”, r0);
setAssetMoments(p, m, C);
setDefaultConstraints(p);

T T T
I
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pwgt = estimateMaxSharpeRatio(p);

display(pwgt);
pwgt =

0.4251
0.2917
0.0856
0.1977

If you start with an initial portfolio, estimateMaxSharpeRatio also returns purchases
and sales to get from your initial portfolio to the portfolio that maximizes the Sharpe
ratio. For example, given an initial portfolio in pwgtO, you can obtain purchases and
sales from the previous example:

pwgtO = [ 0.3; 0.3; 0.2; 0.1 ];
p = setlnitPort(p, pwgt0);
[pwgt, pbuy, psell] = estimateMaxSharpeRatio(p);

display(pwgt);
display(pbuy);
display(psell);

pwgt =

0.4251
0.2917
0.0856
0.1977

pbuy =
0.1251
0

0
0.0977

psell =

0.0083
0.1144
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0
If you do not specify an initial portfolio, the purchase and sale weights assume that you
initial portfolio is O.

Choosing and Controlling the Solver

The default solver for mean-variance portfolio optimization is Icprog, which implements
a linear complementarity programming (LCP) algorithm. Although Icprog works for
most problems, you can adjust arguments to control the algorithm. Alternatively, the
mean-variance portfolio optimization tools let you use any of the variations of quadprog
from Optimization Toolbox™ software. Unlike Optimization Toolbox which uses the
trust-region-reflective algorithm as the default algorithm for quadprog, the
portfolio optimization tools use the interior-point-convex algorithm. For details
about quadprog and quadratic programming algorithms and options, see “Quadratic
Programming Algorithms”.

To modify either Icprog or to specify quadprog as your solver, use the setSolver
function to set the hidden properties solverType and solverOptions that specify and
control the solver. Since the solver properties are hidden, you cannot set these using the
Portfolio function. The default solver is Icprog so you do not need to use setSolver
to specify this solver. To use quadprog, you must set up the interior-point-convex
version of quadprog using:

Portfolio;
setSolver(p, "quadprog®);
play(p.-solverType);

[ |

p
p
di

quadprog
and you can switch back tolcprog with:

p = setSolver(p, "lcprog®);
display(p-solverType);

Icprog

In both cases, setSolver sets up default options associated with either solver. If you
want to specify additional options associated with a given solver, setSolver accepts
these options with argument name-value pair arguments in the function call. For
example, if you intend to use quadprog and want to use the active-set algorithm, call
setSolver with:

p = setSolver(p, "quadprog®, “Algorithm®, “active-set");
display(p-solverOptions._Algorithm);
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active-set

In addition, if you want to specify any of the options for quadprog that are normally set
through optimoptions, setSolver accepts an optimoptions object as the second
argument. For example, you can start with the default options for quadprog set by
setSolver and then change the algorithm to "trust-region-reflective® with no
displayed output:

p = Portfolio;

options = optimoptions(“quadprog®, “Algorithm®, “trust-region-reflective”, “Display”, “off");

p = setSolver(p, “quadprog®, options);

display(p-solverOptions.Algorithm);

display(p-solverOptions.Display);

trust-region-reflective
off

See Also

estimateFrontier | estimateFrontierByReturn | estimateFrontierByRisk
| estimateFrontierByRisk | estimateFrontierLimits |
estimateMaxSharpeRatio | estimatePortMoments | estimatePortReturn |
estimatePortRisk | Portfolio | setSolver

Related Examples

. “Creating the Portfolio Object” on page 4-24

. “Working with Portfolio Constraints” on page 4-57

. “Estimate Efficient Frontiers for Portfolio Object” on page 4-99
. “Asset Allocation Case Study” on page 4-142

. “Portfolio Optimization Examples” on page 4-114

More About

. “Portfolio Object” on page 4-19

. “Portfolio Optimization Theory” on page 4-2
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)
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Estimate Efficient Frontiers for Portfolio Object

In this section...

“Obtaining Portfolio Risks and Returns” on page 4-99
“Plotting the Efficient Frontier for a Portfolio Object” on page 4-101

Whereas “Estimate Efficient Portfolios for Portfolio Object” on page 4-87 focused on
estimation of efficient portfolios, this section focuses on the estimation of efficient
frontiers. For information on the workflow when using Portfolio objects, see “Portfolio
Object Workflow” on page 4-17.

Obtaining Portfolio Risks and Returns

Given any portfolio and, in particular, efficient portfolios, the function
estimatePortReturn, estimatePortRisk, and estimatePortMoments provide
estimates for the return (or return proxy), risk (or the risk proxy), and, in the case of
mean-variance portfolio optimization, the moments of expected portfolio returns. Each
function has the same input syntax but with different combinations of outputs. Suppose
that you have this following portfolio optimization problem that gave you a collection of
portfolios along the efficient frontier in pwgt:

m
C

[ 0.05; 0.1; 0.12; 0.18 ];

[ 0.0064 0.00408 0.00192 0O;

.00408 0.0289 0.0204 0.0119;

.00192 0.0204 0.0576 0.0336;

0.0119 0.0336 0.1225 ];

pwgtO = [ 0.3; 0.3; 0.2; 0.1 ];

p = Portfolio("AssetMean®, m, "AssetCovar®, C, "InitPort", pwgtO);

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p);

Given pwgtO and pwgt, use the portfolio risk and return estimation functions to obtain
risks and returns for your initial portfolio and the portfolios on the efficient frontier:

[eNeoNe)

[prskO, pret0] = estimatePortMoments(p, pwgtO);
[prsk, pret] = estimatePortMoments(p, pwgt);

or

prskO = estimatePortRisk(p, pwgt0);
pret0 = estimatePortReturn(p, pwgt0);
prsk = estimatePortRisk(p, pwgt);
pret = estimatePortReturn(p, pwgt);
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In either case, you obtain these risks and returns:

display(prsk0);
display(pret0);
display(prsk);
display(pret);

prskOo =
0.1103

pret0 =
0.0870

prsk =

0.0769
0.0831
0.0994
0.1217
0.1474
0.1750
0.2068
0.2487
0.2968
0.3500

pret =

0.0590
0.0725
0.0859
0.0994
0.1128
0.1262
0.1397
0.1531
0.1666
0.1800

Note that the returns and risks are at the periodicity of the moments of asset returns so

that, if you have values for AssetMean and AssetCovar in terms of monthly returns,
the estimates for portfolio risk and return are in terms of monthly returns as well.
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In addition, the estimate for portfolio risk in the mean-variance case is the standard
deviation of portfolio returns, not the variance of portfolio returns.

Plotting the Efficient Frontier for a Portfolio Object

The plotFrontier function creates a plot of the efficient frontier for a given portfolio
optimization problem. This function accepts several types of inputs and generates a

plot with an optional possibility to output the estimates for portfolio risks and returns
along the efficient frontier. plotFrontier has four different ways that it can be used. In
addition to a plot of the efficient frontier, if you have an initial portfolio in the InitPort
property, plotFrontier also displays the return versus risk of the initial portfolio

on the same plot. If you have a well-posed portfolio optimization problem set up in a
Portfolio object and you use plotFrontier, you will get a plot of the efficient frontier
with the default number of portfolios on the frontier (the default number is currently 10
and is maintained in the hidden property defaultNumPorts). This example illustrates a
typical use of plotFrontier to create a new plot:

m
¢

.05; 0.1; 0.12; 0.18 1;
.0064 0.00408 0.00192 0;
.00408 0.0289 0.0204 0.0119;
.00192 0.0204 0.0576 0.0336;
0.0119 0.0336 0.1225 7];

[ 0.3; 0.3; 0.2; 0.1 ];

L
L

Iooooo

pwgtO

= Portfolio("Name®", "Asset Allocation Portfolio®, "InitPort”, pwgtO);
= setAssetMoments(p, m, C);

= setDefaultConstraints(p);

lotFrontier(p);

T T T O
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The Name property appears as the title of the efficient frontier plot if you set it in the
Portfolio object. Without an explicit name, the title on the plot would be “Efficient
Frontier.” If you want to obtain a specific number of portfolios along the efficient frontier,
use plotFrontier with the number of portfolios that you want. Suppose that you have
the Portfolio object from the previous example and you want to plot 20 portfolios along
the efficient frontier and to obtain 20 risk and return values for each portfolio:

[prsk, pret] = plotFrontier(p, 20);
display([pret, prsk]);

ans =
0.0590 0.0769
0.0654 0.0784
0.0718 0.0825
0.0781 0.0890
0.0845 0.0973
0.0909 0.1071
0.0972 0.1179
0.1036 0.1296
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0.1100 0.1418
0.1163 0.1545
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0.1418 0.2128
0.1482 0.2323
0.1545 0.2535
0.1609 0.2760
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0.1800 0.3500
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Plotting Existing Efficient Portfolios

If you already have efficient portfolios from any of the "estimateFrontier" functions
(see “Estimate Efficient Portfolios for Portfolio Object” on page 4-87), pass them into
plotFrontier directly to plot the efficient frontier:

m=[0.05; 0.1; 0.12; 0.18 1;
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C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

Portfolio("Name®", "Asset Allocation Portfolio”, "InitPort”, pwgtO);
setAssetMoments(p, m, C);

setDefaultConstraints(p);

pwgt = estimateFrontier(p, 20);

plotFrontier(p, pwgt);

T T O
i nn
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Plotting Existing Efficient Portfolio Risks and Returns

If you already have efficient portfolio risks and returns, you can use the interface to
plotFrontier to pass them into plotFrontier to obtain a plot of the efficient frontier:

m = [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0O;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];
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Portfolio("Name®", "Asset Allocation Portfolio”, "InitPort”, pwgtO);
setAssetMoments(p, m, C);

= setDefaultConstraints(p);
[prsk pret] = estimatePortMoments(p, p-estimateFrontier(20));
plotFrontier(p, prsk, pret);

p =
p:

4] Figurel EI@
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See Also

estimatePortMoments | estimatePortReturn | plotFrontier | Portfolio

Related Examples

. “Creating the Portfolio Object” on page 4-24

. “Working with Portfolio Constraints” on page 4-57

. “Estimate Efficient Portfolios for Portfolio Object” on page 4-87
. “Postprocessing Results” on page 4-107

. “Asset Allocation Case Study” on page 4-142
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. “Portfolio Optimization Examples” on page 4-114

More About

. “Portfolio Object” on page 4-19

. “Portfolio Optimization Theory” on page 4-2
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)
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Postprocessing Results

In this section...
“Setting Up Tradable Portfolios” on page 4-107

“Troubleshooting Portfolio Optimization Results” on page 4-108

After obtaining efficient portfolios or estimates for expected portfolio risks and returns,
use your results to set up trades to move toward an efficient portfolio. For information on
the workflow when using Portfolio objects, see “Portfolio Object Workflow” on page 4-17.

Setting Up Tradable Porifolios

Suppose that you set up a portfolio optimization problem and obtained portfolios on
the efficient frontier. Use the dataset object from Statistics and Machine Learning
Toolbox™ to form a blotter that lists your portfolios with the names for each asset. For
example, suppose that you want to obtain five portfolios along the efficient frontier.
You can set up a blotter with weights multiplied by 100 to view the allocations for each

portfolio:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;

0.00408 0.0289 0.0204 0.0119;

0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];
pwgtO0 = [ 0.3; 0.3; 0.2; 0.1 ];

Portfolio("InitPort™, pwgtO);

setAssetList(p, "Bonds”,"Large-Cap Equities”,"Small-Cap Equities”,"Emerging Equities®);
setAssetMoments(p, m, C);

setDefaultConstraints(p);

gt = estimateFrontier(p, 5);

p
p
p
p
pwi

pnames = cell(1,5);
for 1 = 1:5
pnames{i} = sprintf("Porthd",i);
end

Blotter = dataset([{100*pwgt},pnames], "obsnames”,p.AssetList);
display(Blotter);

Blotter =
Portl Port2 Port3 Port4 Port5
Bonds 88.906 51.216 13.525 0 0
Large-Cap Equities 3.6875 24 .387 45_.086 27.479 0
Small-Cap Equities 4.0425 7.7088 11.375 13.759 0
Emerging Equities 3.364 16.689 30.014 58.762 100
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This result indicates that you would invest primarily in bonds at the minimum-risk/
minimum-return end of the efficient frontier (Portl), and that you would invest
completely in emerging equity at the maximum-risk/maximum-return end of the efficient
frontier (Port5). You can also select a particular efficient portfolio, for example, suppose
that you want a portfolio with 15% risk and you add purchase and sale weights outputs
obtained from the “estimateFrontier” functions to set up a trade blotter:

m
c

[ 0.05; 0.1; 0.12; 0.18 ];

[ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

pwgtO0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = Portfolio("InitPort”, pwgt0);

p = setAssetList(p, "Bonds”,"Large-Cap Equities”,"Small-Cap Equities”, Emerging Equities”);
p = setAssetMoments(p, m, C);

p = setDefaultConstraints(p);

[pwgt, pbuy, psell] = estimateFrontierByRisk(p, 0.15);

Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]l}, ...
{"Initial”, "Weight", "Purchases”,"Sales"}], "obsnames”,p.AssetList);

display(Blotter);

Blotter =
Initial Weight Purchases Sales
Bonds 30 20.299 0 9.7007
Large-Cap Equities 30 41.366 11.366 0
Small-Cap Equities 20 10.716 0 9.2838
Emerging Equities 10 27.619 17.619 0

If you have prices for each asset (in this example, they can be ETFs), add them to your
blotter and then use the tools of the dataset object to obtain shares and shares to be
traded. For an example, see “Asset Allocation Case Study” on page 4-142.
Troubleshooting Porifolio Optimization Results

Portfolio Object Destroyed When Modifying

If a Portfolio object is destroyed when modifying, remember to pass an existing object
into the Portfolio function if you want to modify it, otherwise it creates a new object.
See “Creating the Portfolio Object” on page 4-24 for details.

Optimization Fails with “Bad Pivot” Message

If the optimization fails with a "bad pivot" message from Icprog, try a larger value for
tolpiv which is a tolerance for pivot selection in the Icprog algorithm (try 1.0e-7,
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for example) or try the interior-point-convex version of quadprog. For details, see
“Choosing and Controlling the Solver” on page 4-97, the help header for Icprog, and the
quadprog documentation.

Speed of Optimization

Although it is difficult to characterize when one algorithm is faster than the other, the
default solver, lcprog is generally faster for smaller problems and the quadprog solver
1s generally faster for larger problems. If one solver seems to take too much time, try the
other solver. To change solvers, use setSolver.

Matrix Incompatibility and "Non-Conformable" Errors

If you get matrix incompatibility or "non-conformable" errors, the representation of
data in the tools follows a specific set of basic rules described in “Conventions for
Representation of Data” on page 4-22.

Missing Data Estimation Fails

If asset return data has missing or NaN values, the estimateAssetMoments function
with the "missingdata” flag set to true may fail with either too many iterations or a
singular covariance. To correct this problem, consider this:

+ If you have asset return data with no missing or NaN values, you can compute a
covariance matrix that may be singular without difficulties. If you have missing
or NaN values in your data, the supported missing data feature requires that your
covariance matrix must be positive-definite, that is, nonsingular.

+ estimateAssetMoments uses default settings for the missing data estimation
procedure that might not be appropriate for all problems.

In either case, you might want to estimate the moments of asset returns separately with
either the ECM estimation functions such as ecmnmle or with your own functions.

mv_optim_transform Errors

If you obtain optimization errors such as:

Error using mv_optim_transform (line 233)
Portfolio set appears to be either empty or unbounded. Check constraints.

Error in Portfolio/estimateFrontier (line 63)
[A, b, fO, f, H, g, Ib] = mv_optim_transform(obj);

or

Error using mv_optim_transform (line 238)
Cannot obtain finite lower bounds for specified portfolio set.
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Error in Portfolio/estimateFrontier (line 63)

[A, b, fO, F, H, g, Ib] = mv_optim_transform(obj);
Since the portfolio optimization tools require a bounded portfolio set, these errors
(and similar errors) can occur if your portfolio set is either empty and, if nonempty,
unbounded. Specifically, the portfolio optimization algorithm requires that your portfolio
set have at least a finite lower bound. The best way to deal with these problems is to
use the validation functions in “Validate the Portfolio Problem for Portfolio Object”
on page 4-82. Specifically, use estimateBounds to examine your portfolio set, and
use checkFeasibility to ensure that your initial portfolio is either feasible and, if
infeasible, that you have sufficient turnover to get from your initial portfolio to the
portfolio set.

Tip To correct this problem, try solving your problem with larger values for turnover or
tracking-error and gradually reduce to the value that you want.

Efficient Portfolios Do Not Make Sense

If you obtain efficient portfolios that do not seem to make sense, this can happen if you
forget to set specific constraints or you set incorrect constraints. For example, if you allow
portfolio weights to fall between O and 1 and do not set a budget constraint, you can get
portfolios that are 100% invested in every asset. Although it may be hard to detect, the
best thing to do is to review the constraints you have set with display of the object. If you
get portfolios with 100% invested in each asset, you can review the display of your object
and quickly see that no budget constraint is set. Also, you can use estimateBounds

and checkFeasibility to determine if the bounds for your portfolio set make sense
and to determine if the portfolios you obtained are feasible relative to an independent
formulation of your portfolio set.

Efficient Frontiers Do Not Make Sense

If you obtain efficient frontiers that do not seem to make sense, this can happen for some
cases of mean and covariance of asset returns. It is possible for some mean-variance
portfolio optimization problems to have difficulties at the endpoints of the efficient
frontier. It is generally rare for standard problems but can occur with, for example,
unusual combinations of turnover constraints and transaction costs. In most cases, the
workaround of setting the hidden property enforcePareto produces a single portfolio
for the entire efficient frontier, where any other solutions are not Pareto optimal (which
is what efficient portfolios must be).
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An example of a portfolio optimization problem that has difficulties at the endpoints of
the efficient frontier is this standard mean-variance portfolio problem (long-only with a
budget constraint) with the following mean and covariance of asset returns:

m=1p[1; 2; 31];

C=[110;110;00117;

p = Portfolio;

p = Portfolio(p, “assetmean®, m, “assetcovar®, C);

p = Portfolio(p, "lowerbudget®, 1, “upperbudget®, 1);
p = Portfolio(p, "lowerbound®, 0);

plotFrontier(p);
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To workaround this problem, set the hidden Portfolio object property for
enforcePareto. This property instructs the optimizer to perform extra steps to ensure
a Pareto-optimal solution. This slows down the solver, but guarantees a Pareto-optimal
solution.

p.enforcePareto = true;
plotFrontier(p);
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See Also

checkFeasibility | estimateAssetMoments | Portfolio

Related Examples

“Creating the Portfolio Object” on page 4-24

“Working with Portfolio Constraints” on page 4-57

“Estimate Efficient Portfolios for Portfolio Object” on page 4-87
“Estimate Efficient Frontiers for Portfolio Object” on page 4-99
“Asset Allocation Case Study” on page 4-142

“Portfolio Optimization Examples” on page 4-114

More About

“Portfolio Object” on page 4-19
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. “Portfolio Optimization Theory” on page 4-2
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)
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The following sequence of examples highlights features of the Portfolio object in the
Financial Toolbox™. Specifically, the examples show how to set up mean-variance
portfolio optimization problems that focus on the two-fund theorem, the impact of
transaction costs and turnover constraints, how to obtain portfolios that maximize the
Sharpe ratio, and how to set up two popular hedge-fund strategies - dollar-neutral and
130-30 portfolios.

Set up the Data

Every example works with moments for monthly total returns of a universe of 30 "blue-
chip" stocks. Although derived from real data, these data are for illustrative purposes
and are not meant to be representative of specific assets or of market performance.

The data are contained in the file BlueChipStockMoments.mat with a list of asset
identifiers in the variable AssetList, a mean and covariance of asset returns in the
variables AssetMean and AssetCovar, and the mean and variance of cash and market
returns in the variables CashMean, CashVar, MarketMean, and MarketVar. Since most
of the analysis requires the use of the standard deviation of asset returns as the proxy for
risk, cash and market variances are converted into standard deviations.

load BlueChipStockMoments

mret = MarketMean;
mrsk = sqgrt(MarketVar);
cret = CashMean;

crsk = sqgrt(Cashvar);

Create a Portfolio Object

The first step is to create a "standard" Portfolio object with the Portfolio constructor and
to incorporate the list of assets, the risk-free rate, and the moments of asset returns into
the object.

Portfolio("AssetList”, AssetList, "RiskFreeRate”, CashMean);
setAssetMoments(p, AssetMean, AssetCovar);

p
p

To provide a basis for comparison, set up an equal-weight portfolio and make it the initial
portfolio in the Portfolio object. Keep in mind that the hedged portfolios to be constructed
later will require a different initial portfolio. Once the initial portfolio is created, the
estimatePortMoments method estimates the mean and standard deviation of equal-
weight portfolio returns.
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p = setInitPort(p, 1/p.NumAssets);
[ersk, eret] = estimatePortMoments(p, p-InitPort);

A specialized "helper" function portfolioexamples_plot makes it possible to plot all
results to be developed here. This first plot shows the distribution of individual assets
according to their means and standard deviations of returns. In addition, the equal-
weight, market, and cash portfolios are plotted on the same plot. Note that the plot
function converts monthly total returns into annualized total returns.

clf;

portfolioexamples_plot("Asset Risks and Returns”,

{"scatter”, mrsk, mret, {"Market"}},

{"scatter”, crsk, cret, {"Cash"}},

{"scatter”, ersk, eret, {"Equal”}}, .

{"scatter”, sqrt(diag(p-AssetCovar)), p.AssetMean, p.AssetList, ".r"});
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Set up a Portfolio Optimization Problem

Set up a "standard" or default mean-variance portfolio optimization problem with the
setDefaultConstraints method that requires fully-invested long-only portfolios
(non-negative weights that must sum to 1). Given this initial problem, estimate the
efficient frontier with the methods estimateFrontier and estimatePortMoments,
where estimateFrontier estimates efficient portfolios and estimatePortMoments
estimates risks and returns for portfolios. The next figure overlays the efficient frontier
on the previous plot.

p = setDefaultConstraints(p);

pwgt = estimateFrontier(p, 20);
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Mean of Returns (Annualized)

[prsk, pret] = estimatePortMoments(p, pwgt);
% Plot efficient frontier

clf;

portfolioexamples_plot("Efficient Frontier”®,

{"line", prsk, pret},

{"scatter”, [mrsk, crsk, ersk], [mret, cret, eret], {"Market®, "Cash”,
{"scatter”, sqrt(diag(p-AssetCovar)), p-AssetMean, p.AssetList, ".r"});
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lllustrate the Tangent Line to the Efficient Frontier

Tobin's mutual fund theorem (Tobin 1958) says that the portfolio allocation problem
can be viewed as a decision to allocate between a riskless asset and a risky portfolio.

"Equal”}},
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In the mean-variance framework, cash can serve as a proxy for a riskless asset and an
efficient portfolio on the efficient frontier serves as the risky portfolio such that any
allocation between cash and this portfolio dominates all other portfolios on the efficient
frontier. This portfolio is called a tangency portfolio because it is located at the point on
the efficient frontier where a tangent line that originates at the riskless asset touches the
efficient frontier.

Given that the Portfolio object already has the risk-free rate, obtain the tangent line by
creating a copy of the Portfolio object with a budget constraint that permits allocation
between 0% and 100% in cash. Since the Portfolio object is a value object, it is easy to
create a copy by assigning the output of either the constructor or set methods to a new
instance of the object. The plot shows the efficient frontier with Tobin's allocations that
form the tangent line to the efficient frontier.

g = setBudget(p, 0, 1);

gwgt = estimateFrontier(q, 20);
[agrsk, gret] = estimatePortMoments(q, qwgt);

% Plot efficient frontier with tangent line (0 to 1 cash)

clf;

portfolioexamples_plot("Efficient Frontier with Tangent Line",

{"line", prsk, pret}, ...

{"line", grsk, qgret, [1, [1, 1}, --..

{"scatter”, [mrsk, crsk, ersk], [mret, cret, eret], {"Market®, "Cash®, “Equal®}},
{"scatter”, sqrt(diag(p-AssetCovar)), p-AssetMean, p.AssetList, ".r"});
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Note that cash actually has a small risk so that the tangent line does not pass through
the cash asset.

Obtain Range of Risks and Returns

To obtain efficient portfolios with target values of either risk or return, it is necessary to
obtain the range of risks and returns among all portfolios on the efficient frontier. This
can be accomplished with the estimateFrontierLimits method.

[rsk, ret] = estimatePortMoments(p, estimateFrontierLimits(p));
display(rsk);
display(ret);
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rsk

-0348
-0903

eoNe)

ret

-0094
-0179

oNe)

The range of monthly portfolio returns is between 0.9% and 1.8% and the range for
portfolio risks is between 3.5% and 9.0%. In annualized terms, the range of portfolio
returns is 11.2% to 21.5% and the range of portfolio risks is 12.1% to 31.3%.

Find a Portfolio with a Targeted Return and Targeted Risk

Given the range of risks and returns, it is possible to locate specific portfolios on
the efficient frontier that have target values for return and risk using the methods
estimateFrontierByReturn and estimateFrontierByRisk.

TargetReturn

= 0.20; % input target annualized return and risk here
TargetRisk = 0.1

5;
% Obtain portfolios with targeted return and risk

awgt = estimateFrontierByReturn(p, TargetReturn/12);
[arsk, aret] = estimatePortMoments(p, awgt);

bwgt = estimateFrontierByRisk(p, TargetRisk/sqrt(12));
[brsk, bret] = estimatePortMoments(p, bwgt);

% Plot efficient frontier with targeted portfolios

clf;

portfolioexamples_plot("Efficient Frontier with Targeted Portfolios”,

{"line", prsk, pret}, ...

{"scatter”, [mrsk, crsk, ersk], [mret, cret, eret], {"Market®, "Cash®, “Equal®}},
{"scatter", arsk, aret, {sprintf("%g%% Return®,100*TargetReturn)}}, .
{"scatter®, brsk, bret, {sprintf("%g%% Risk",100*TargetRisk)}},

{"scatter”, sqrt(diag(p-AssetCovar)), p-AssetMean, p.AssetList, ".r"});
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To see what these targeted portfolios look like, use the dataset object to set up "blotters"
that contain the portfolio weights and asset names (which are obtained from the Portfolio
object).

aBlotter = dataset({100*awgt(awgt > 0),"Weight"}, "obsnames®, p.AssetList(awgt > 0));

fprintf("Portfolio with %g%% Target Return\n®, 100*TargetReturn);
disp(aBlotter);

bBlotter = dataset({100*bwgt(bwgt > 0),"Weight"}, "obsnames®, p.AssetList(bwgt > 0));

fprintf("Portfolio with %g%% Target Risk\n®, 100*TargetRisk);
disp(bBlotter);
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Portfolio with 20% Target Return

Weight
CAT 1.1445
INTC 0.17452
MO 9.6521
MSFT 0.85862
uTx 56.918
WMT 31.253

Portfolio with 15% Target Risk

Weight
INTC 2.2585
JINJ 9.2162
MMM 16.603
MO 15.388
MSFT 4._4467
PG 4.086
uTx 10.281
WMT 25.031
XOM 12.69

Transactions Costs

The Portfolio object makes it possible to account for transaction costs as part of the
optimization problem. Although individual costs can be set for each asset, use the scalar
expansion features of the Portfolio object's methods to set up uniform transaction costs
across all assets and compare efficient frontiers with gross versus net portfolio returns.

BuyCost = 0.0020;
SellCost = 0.0020;

g = setCosts(p, BuyCost, SellCost);

gwgt = estimateFrontier(q, 20);
[arsk, gret] = estimatePortMoments(q, qwgt);

% Plot efficient frontiers with gross and net returns

clf;

portfolioexamples_plot("Efficient Frontier with and without Transaction Costs”

{"line", prsk, pret, {"Gross"}, ":b"}, ...
{"line", grsk, qret, {"Net"}}, ...

{"scatter”, [mrsk, crsk, ersk], [mret, cret, eret], {"Market", "Cash", "Equal"}},
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Mean of Returns (Annualized)

{"scatter”, sqrt(diag(p-AssetCovar)), p-AssetMean, p.AssetList, ".r"});

Efficient Frontier with and without Transaction Costs
D25 T T T T T T T T T

N ln‘"“"‘III LITX

0.2

INTC

0.15

011

005
Cash *0D ~bREC

IKD 1llllllllllGrD_5_5
Met

—D_ DE i i i i i i
0 0.0s 01 0.1 02 025 03 035 04 0.45 05

Standard Deviation of Returns (Annualized)

Turnover Constraint

In addition to transaction costs, the Portfolio object can handle turnover constraints. The
following example demonstrates that a turnover constraint produces an efficient frontier
in the neighborhood of an initial portfolio that may restrict trading. Moreover, the
introduction of a turnover constraint often implies that multiple trades may be necessary
to shift from an initial portfolio to an unconstrained efficient frontier. Consequently, the
turnover constraint introduces a form of time diversification that can spread trades out
over multiple time periods. In this example, note that the sum of purchases and sales
from the estimateFrontier method confirms that the turnover constraint has been
satisfied.
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BuyCost = 0.0020;

SellCost = 0.0020;
Turnover = 0.2;
q setCosts(p, BuyCost, SellCost);

g = setTurnover(q, Turnover);

[gwgt, gbuy, gsell] = estimateFrontier(q, 20);
[grsk, gret] = estimatePortMoments(q, qwgt);

% Plot efficient frontier with turnover constraint

clf;

portfolioexamples_plot("Efficient Frontier with Turnover Constraint®, ...

{"line", prsk, pret, {"Unconstrained"}, ":b"}, ...

{"line", qrsk, gret, {sprintf("%g%% Turnover®, 100*Turnover)}}, ...

{"scatter”, [mrsk, crsk, ersk], [mret, cret, eret], {"Market", "Cash", "Equal®}}, -..
{"scatter”, sqrt(diag(p-AssetCovar)), p.AssetMean, p.AssetList, ".r"});

fprintf("Sum of Purchases by Portfolio along Efficient Frontier (Max. Turnover %g%%)\n
100*Turnover);

disp(100*sum(gbuy));

fprintf("Sum of Sales by Portfolio along Efficient Frontier (Max. Turnover %g%%)\n®, .
100*Turnover);

disp(100*sum(gsell));

Sum of Purchases by Portfolio along Efficient Frontier (Max. Turnover 20%)
Columns 1 through 7

20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
Columns 8 through 14

20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
Columns 15 through 20

20.0000 20.0000 20.0000 20.0000 20.0000 20.0000

Sum of Sales by Portfolio along Efficient Frontier (Max. Turnover 20%)
Columns 1 through 7
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20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
Columns 8 through 14
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Tracking-Error Constraint

The Portfolio object can handle tracking-error constraints, where tracking-error is the
relative risk of a portfolio compared with a tracking portfolio. In this example, a sub-
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collection of nine assets forms an equally-weighted tracking portfolio. The goal is to find
efficient portfolios with tracking errors that are within 5% of this tracking portfolio.

ii = [15, 16, 20, 21, 23, 25, 27, 29, 30];: % indexes of assets to include in tracking

TrackingError = 0.05/sqrt(12);

TrackingPort = zeros(30, 1);
TrackingPort(ii) = 1;
TrackingPort = (1/sum(TrackingPort))*TrackingPort;

g = setTrackingError(p, TrackingError, TrackingPort);

gwgt = estimateFrontier(q, 20);
[grsk, gret] = estimatePortMoments(q, qwgt);

[trsk, tret] = estimatePortMoments(q, TrackingPort);
% Plot efficient frontier with tracking-error constraint

clf;

portfolioexamples_plot("Efficient Frontier with 5% Tracking-Error Constraint®,
{"line", prsk, pret, {"Unconstrained"}, ":b"},

{"line", grsk, gret, {"Tracking"}}, -

{"scatter”, [mrsk, crsk], [mret, cret], {"Market®, "Cash"}},

{"scatter”, trsk, tret, {"Tracking"}, "r"}):
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Combined Turnover and Tracking-Error Constraints

This example illustrates the interactions that can occur with combined constraints. In
this case, both a turnover constraint relative to an initial equal-weight portfolio and a
tracking-error constraint relative to a tracking portfolio must be satisfied. The turnover
constraint has maximum 30% turnover and the tracking-error constraint has maximum
5% tracking error. Note that the turnover to get from the initial portfolio to the tracking
portfolio is 70% so that an upper bound of 30% turnover means that the efficient frontier
will lie somewhere between the initial portfolio and the tracking portfolio.

Turnover
InitPort

0.3;
(1/9-NumAssets)*ones(q-NumAssets, 1);

ii = [15, 16, 20, 21, 23, 25, 27, 29, 30];: % indexes of assets to include in tracking
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TrackingError = 0.05/sqrt(12);

TrackingPort = zeros(30, 1);
TrackingPort(ii) = 1;
TrackingPort = (1/sum(TrackingPort))*TrackingPort;

g = setTurnover(g, Turnover, InitPort);

gwgt = estimateFrontier(q, 20);
[grsk, gret] = estimatePortMoments(q, qwgt);

[trsk, tret]
[ersk, eret]

estimatePortMoments(q, TrackingPort);
estimatePortMoments(q, InitPort);

% Plot efficient frontier with combined turnover and tracking-error constraint

clf;

portfolioexamples_plot("Efficient Frontier with Turnover and Tracking-Error Constraint
{"line", prsk, pret, {"Unconstrained"}, ":b"}, ...

{"line", grsk, gret, {"Turnover & Tracking"}}, ...

{"scatter”, [mrsk, crsk], [mret, cret], {"Market", "Cash"}}, ...

{"scatter”, trsk, tret, {"Tracking"}, "r"}, ...

{"scatter”, ersk, eret, {"Initial"}, "b"});
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Efficient Frontier with Tumover and Tracking-Error Constraint
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Maximize the Sharpe Ratio

The Sharpe ratio (Sharpe 1966) is a measure of return-to-risk that plays an important
role in portfolio analysis. Specifically, a portfolio that maximizes the Sharpe ratio is
also the tangency portfolio on the efficient frontier from the mutual fund theorem. The
maximum Sharpe ratio portfolio is located on the efficient frontier with the method
estimateMaxSharpeRatio and the dataset object is used to list the assets in this
portfolio.

p = setlnitPort(p, 0);

swgt = estimateMaxSharpeRatio(p);
[srsk, sret] = estimatePortMoments(p, swgt);
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% Plot efficient frontier with portfolio that attains maximum Sharpe ratio

clf;

portfolioexamples_plot("Efficient Frontier with Maximum Sharpe Ratio Portfolio®, ...
{"line", prsk, pret}, ...

{"scatter”, srsk, sret, {"Sharpe”}}, ...

{"scatter®, [mrsk, crsk, ersk], [mret, cret, eret], {"Market", "Cash®, "Equal®}}, ...
{"scatter”, sqrt(diag(p-AssetCovar)), p-AssetMean, p.AssetList, ".r"});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio
Blotter = dataset({100*swgt(swgt > 0),"Weight"}, “obsnames®, AssetList(swgt > 0));

fprintf("Portfolio with Maximum Sharpe Ratio\n®);

disp(Blotter);
Portfolio with Maximum Sharpe Ratio
Weight
INTC 2.6638
JINJ 9.0044
MMM 15.502
MO 13.996
MSFT 4.4777
PG 7.4588
UTx 6.0056
WMT 22.051
XOM 18.841



Portfolio Optimization Examples

Mean of Returns (Annualized)
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Confirm that Maximum Sharpe Ratio is a Maximum

The following plot demonstrates that this portfolio (which is located at the dot on the
plots) indeed maximizes the Sharpe ratio among all portfolios on the efficient frontier.

psratio = (pret - p.RiskFreeRate) ./ prsk;
ssratio = (sret - p.RiskFreeRate) / srsk;
clf;

subplot(2,1,1);

plot(prsk, pret, "LineWidth®, 2);

hold on

scatter(srsk, sret, "g", "filled");
title("\bfEfficient Frontier®);
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xlabel ("Portfolio Risk");
ylabel ("Portfolio Return®);
hold off

subplot(2,1,2);

plot(prsk, psratio, “LineWidth®, 2);
hold on

scatter(srsk, ssratio, "g", “filled");
title("\bfSharpe Ratio");

xlabel ("Portfolio Risk");

ylabel ("Sharpe Ratio®);

hold off
Efficient Frontier
0.02 . . . . : :
E —
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lllustrate that Sharpe is the Tangent Portfolio

The next plot demonstrates that the portfolio that maximizes the Sharpe ratio is also a
tangency portfolio (in this case, the budget constraint is opened up to permit between 0%
and 100% in cash).

g = setBudget(p, 0, 1);

gwgt = estimateFrontier(q, 20);
[grsk, gret] = estimatePortMoments(q, qwgt);

% Plot that shows Sharpe ratio portfolio is the tangency portfolio

clf;

portfolioexamples_plot("Efficient Frontier with Maximum Sharpe Ratio Portfolio”,
{"line", prsk, pret}, -

{"line", grsk, gret, [1, [1, 1},

{"scatter”, srsk, sret, {"Sharpe”}}, -

{"scatter”, [mrsk, crsk, ersk], [mret, cret, eret], {"Market®, "Cash®, “Equal®}},
{"scatter”, sqrt(diag(p-AssetCovar)), p-AssetMean, p.AssetList, ".r"});
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Efficient Frontier with Maximum Sharpe Ratio Portfolio
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Dollar-Neutral Hedge-Fund Structure

To illustrate how to use the portfolio optimization tools in hedge fund management, two
popular strategies with dollar-neutral and 130-30 portfolios are examined. The dollar-
neutral strategy invests equally in long and short positions such that the net portfolio
position is 0. Such a portfolio is said to be dollar-neutral.

To set up a dollar-neutral portfolio, start with the "standard" portfolio problem and

set the maximum exposure in long and short positions in the variable Exposure.

The bounds for individual asset weights are plus or minus Exposure. Since the net
position must be dollar-neutral, the budget constraint is 0 and the initial portfolio must
be 0. Finally, the one-way turnover constraints provide the necessary long and short
restrictions to prevent "double-counting" of long and short positions. The blotter shows
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the portfolio weights for the dollar-neutral portfolio that maximizes the Sharpe ratio. The
long and short positions are obtained from the buy and sell trades relative to the initial
portfolio.

Exposure = 1;

g = setBounds(p, -Exposure, Exposure);
g = setBudget(q, 0, 0);
g = setOneWayTurnover(q, Exposure, Exposure, 0);

[gqwgt, gqlong, gshort] = estimateFrontier(q, 20);
[grsk, gret] = estimatePortMoments(q, qwgt);

[gswgt, gslong, gsshort] = estimateMaxSharpeRatio(q);
[gsrsk, gsret] = estimatePortMoments(q, gswgt);

% Plot efficient frontier for a dollar-neutral fund structure with tangency portfolio

clf;

portfolioexamples_plot("Efficient Frontier with Dollar-Neutral Portfolio”,
{"line", prsk, pret, {"Standard"}, "b:"}, ...

{"line", grsk, gret, {"Dollar-Neutral®}, "b"},

{"scatter”, gsrsk, gsret, {"Sharpe®}}, -

{"scatter”, [mrsk, crsk, ersk], [mret, cret, eret], {"Market®, "Cash®, “Equal®}},
{"scatter”, sqrt(diag(p-AssetCovar)), p-AssetMean, p.AssetList, ".r"});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio

Blotter = dataset({100*gswgt(abs(gswgt) > 1.0e-4), “Weight"},
{100*gslong(abs(gswgt) > 1.0e-4), "Long"},
{100*gsshort(abs(gswgt) > 1.0e-4), "Short"},

"obsnames®, AssetList(abs(gswgt) > 1.0e-4));

fprintf("Dollar-Neutral Portfolio with Maximum Sharpe Ratio\n®");
disp(Blotter);

fprintf("Confirm Dollar-Neutral Portfolio\n®);
fprintf(® (Net, Long, Short)\n");
disp([ sum(Blotter._Weight), sum(Blotter.Long), sum(Blotter.Short) ]);

Dollar-Neutral Portfolio with Maximum Sharpe Ratio

Weight Long Short
AA 0.54635 0.54635 0
AIG 3.2638 3.2638 0
AXP 0.99646 0.99646 0

4-135



4 Mean-Variance Portfolio Optimization Tools

4-136

BA
c
CAT
DD
DIS
GE
GM
HD
HON
HPQ
1BM
INTC
INJ
JPM
KO
MCD
MMM
MO
MRK
MSFT
PFE
PG
SBC
uTX
vz
WMT
XOM

Confirm Dollar-Neutral

-3.7532
15.036
4.0011

-19.396

-5.1796

-3.8848

-3.9958
1.1822

-1.5408
0.1064

-8.6533
1.8999
1.4707

-2.7136

-15.253
4.1986
8.1604
4.3871
4.0236
4.3777

-9.7673

1.771

-5.6426
6.1694

-2.6179

0.91105
19.896

(Net, Long, Short)

-0.0000

82.3985

4.1986
8.1604
4.3871
4.0236
4.3777
0
1.771
0
6.1694
0
0.91105
19.896

Portfolio

82.3985

3.7532
0
0
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3.8848
3.9958
0
1.5408
0
8.6533
0
0
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130/30 Fund Structure

Finally, the turnover constraints can be used to set up a 130-30 portfolio structure, which
is a structure with a net long position but permits leverage with long and short positions
up to a maximum amount of leverage. In the case of a 130-30 portfolio, the leverage is
30%.

To set up a 130-30 portfolio, start with the "standard" portfolio problem and set the
maximum value for leverage in the variable Leverage. The bounds for individual asset
weights range between -Leverage and 1 + Leverage. Since the net position must be
long, the budget constraint is 1 and, once again, the initial portfolio is 0. Finally, the one-
way turnover constraints provide the necessary long and short restrictions to prevent
"double-counting" of long and short positions. The blotter shows the portfolio weights for
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the 130-30 portfolio that maximizes the Sharpe ratio. The long and short positions are
obtained from the buy and sell trades relative to the initial portfolio.

Leverage = 0.3;

g = setBounds(p, -Leverage, 1 + Leverage);
q = setBudget(q, 1, 1);
g = setOneWayTurnover(q, 1 + Leverage, Leverage);

[gwgt, gbuy, gsell] = estimateFrontier(q, 20);
[arsk, qret] = estimatePortMoments(q, qwgt);

[aswgt, gslong, gsshort] = estimateMaxSharpeRatio(q);
[gsrsk, gsret] = estimatePortMoments(q, qgswgt);

% Plot efficient frontier for a 130-30 fund structure with tangency portfolio

clf;
portfolioexamples_plot(sprintf("Efficient Frontier with %g-%g Portfolio”,
100*(1 + Leverage),100*Leverage), -.
{"line", prsk, pret, {"Standard"}, "b:"},
{"line", grsk, qgret, {"130-30"}, "b"},
{"scatter”, gsrsk, gsret, {"Sharpe®}}, .
{"scatter”, [mrsk, crsk, ersk], [mret, cret, eret], {"Market®", "Cash", "Equal®}},
{"scatter”, sqrt(diag(p-.AssetCovar)), p-AssetMean, p.AssetList, ".r"});

% Set up a dataset object that contains the portfolio that maximizes the Sharpe ratio

Blotter = dataset({100*gswgt(abs(gswgt) > 1.0e-4), “Weight"},
{100*gslong(abs(gswgt) > 1.0e-4), "Long"},
{100*gsshort(abs(gswgt) > 1.0e-4), "Short"},

"obsnames®, AssetList(abs(gswgt) > 1.0e-4));

fprintf("%g-%g Portfolio with Maximum Sharpe Ratio\n®,100*(1 + Leverage),100*Leverage)
disp(Blotter);

fprintf("Confirm %g-%g Portfolio\n®,100*(1 + Leverage),100*Leverage);
fprintf(®" (Net, Long, Short)\n");
disp([ sum(Blotter.Weight), sum(Blotter.Long), sum(Blotter.Short) ]);

130-30 Portfolio with Maximum Sharpe Ratio

Weight Long Short
DD -9.5565 0 9.5565
HON -6.0245 0 6.0245
INTC 4.0335 4.0335 0
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JNJ
JPM
KO
MMM
MO
MSFT
PG
SBC
uTx
WMT
XOM

7.1234
-0.44583
-13.646
20.908
14.433
4 _.5592
17.243
-0.32712
5.3584
21.018
35.323

7.1234

20.908
14433
4.5592
17.243

5.3584
21.018
35.323

Confirm 130-30 Portfolio
(Net, Long, Short)
100.0000 130.0000

30.0000

0
0.44583
13.646
0

0

0

0
0.32712
0

0

0
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Efficient Frontier with 130-30 Portfolio
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Related Examples
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. “Postprocessing Results” on page 4-107

More About
. “Portfolio Object” on page 4-19
. “Portfolio Optimization Theory” on page 4-2
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Asset Allocation Case Study

This example shows how to set up a basic asset allocation problem that uses mean-
variance portfolio optimization to estimate efficient portfolios.

Step 1. Defining the portfolio problem.

Suppose that you want to manage an asset allocation fund with four asset classes: bonds,
large-cap equities, small-cap equities, and emerging equities. The fund is long-only with
no borrowing or leverage, should have no more than 85% of the portfolio in equities, and
no more than 35% of the portfolio in emerging equities. The cost to trade the first three
assets is 10 basis points annualized and the cost to trade emerging equities is four times
higher. Finally, you want to ensure that average turnover is no more than 15%. To solve
this problem, you will set up a basic mean-variance portfolio optimization problem and
then slowly introduce the various constraints on the problem to get to a solution.

To set up the portfolio optimization problem, start with basic definitions of known
quantities associated with the structure of this problem. Each asset class is assumed to
have a tradeable asset with a real-time price. Such assets can be, for example, exchange-
traded funds (ETFs). The initial portfolio with holdings in each asset that has a total of
$7.5 million along with an additional cash position of $60,000. These basic quantities
and the costs to trade are set up in the following variables with asset names in the cell
array Asset, current prices in the vector Price , current portfolio holdings in the vector
Holding, and transaction costs in the vector UnitCost.

To analyze this portfolio, you can set up a blotter in a dataset object to help track
prices, holdings, weights, and so forth. In particular, you can compute the initial portfolio
weights and maintain them in a new blotter field called InitPort.

Asset = { "Bonds®, "Large-Cap Equities®, "Small-Cap Equities®, "Emerging Equities” };
Price = [ 52.4; 122.7; 35.2; 46.9 ];

Holding = [ 42938; 24449; 42612; 15991 ];

UnitCost = [ 0.001; 0.001; 0.001; 0.004 ];

Blotter = dataset({Price, "Price"}, {Holding, "InitHolding"}, "obsnames”,Asset);
Wealth = sum(Blotter.Price .* Blotter.InitHolding);

Blotter.InitPort = (1/Wealth)*(Blotter.Price .* Blotter.InitHolding);
Blotter._UnitCost = UnitCost;

disp(Blotter);

Price InitHolding InitPort UnitCost
Bonds 52.4 42938 0.3 0.001
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Large-Cap Equities 122.7 24449 0.4 0.001
Small-Cap Equities 35.2 42612 0.2 0.001
Emerging Equities 46.9 15991 0.1 0.004

Step 2. Simulating asset prices.

Since this is a hypothetical example, to simulate asset prices from a given mean and
covariance of annual asset total returns for the asset classes, the portsim fuction is used
to create asset returns with the desired mean and covariance. Specifically, portsim is
used to simulate five years of monthly total returns and then plotted to show the log of
the simulated total return prices

The mean and covariance of annual asset total returns are maintained in the variables
AssetMean and AssetCovar. The simulated asset total return prices (which are
compounded total returns) are maintained in the variable Y. All initial asset total return
prices are normalized to 1 in this example.

AssetMean = [ 0.05; 0.1; 0.12; 0.18 ];
AssetCovar = [ 0.0064 0.00408 0.00192 O0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

X = portsim(AssetMean®/12, AssetCovar/12, 60); % monthly total returns for 5 years (60
[Y, T]1 = ret2tick(X, [1, 1/12); % form total return prices

plot(T, log(Y));

title("\bfSimulated Asset Class Total Return Prices");
xlabel ("Year®);

ylabel ("Log Total Return Price);

legend(Asset, "Location”, "best”);
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Simulated Asset Class Total Return Prices
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Step 3. Setting up the Portfolio object.

To explore portfolios on the efficient frontier, set up a Portfolio object using these
specifications:

+ Portfolio weights are nonnegative and sum to 1.
+ Equity allocation is no more than 85% of the portfolio.

+  Emerging equity is no more than 35% of the portfolio.

These specifications are incorporated into the Portfolio object p in the following sequence
of using functions that starts with using the Portfol io function.
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5

p

The specification of the initial portfolio from Blotter gives the number of assets

in your universe so you do not need to specify the NumAssets property directly.
Next, set up default constraints (long-only with a budget constraint). In addition,
set up the group constraint that imposes an upper bound on equities in the portfolio
(equities are identified in the group matrix with 1's) and the upper bound constraint
on emerging equities. Although you could have set the upper bound on emerging
equities using the setBounds function, notice how the addGroups function is used
to set up this constraint.

To have a fully specified mean-variance portfolio optimization problem, you must
specify the mean and covariance of asset returns. Since starting with these moments
in the variables AssetMean and AssetCovar, you can use the setAssetMoments
function to enter these variables into your Portfolio object (remember that you are
assuming that your raw data are monthly returns which is why you divide your
annual input moments by 12 to get monthly returns).

Use the total return prices with the estimateAssetMoments function with a
specification that your data in Y are prices, and not returns, to estimate asset return
moments for your Portfolio object.

Although the returns in your Portfolio object are in units of monthly returns, and
since subsequent costs are annualized, it is convenient to specify them as annualized
total returns with this direct transformation of the AssetMean and AssetCovar
properties of your Portfolio object p.

Display the Portfolio object p.

= Portfolio("Name®, "Asset Allocation Portfolio”,

"AssetlList”, Asset, "InitPort", Blotter.InitPort);

p
p
p

T T

p
p
d

setDefaultConstraints(p);
setGroups(p, [ 0, 1, 1, 1 1, [1, 0.85);
addGroups(p, [ 0, 0, 0, 1 1, [1, 0.35);

setAssetMoments(p, AssetMean/12, AssetCovar/12);
estimateAssetMoments(p, Y, "DataFormat®, "Prices");

.AssetMean = 12*p.AssetMean;
.AssetCovar = 12*p.AssetCovar;

splay(p);
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Portfolio with properties:

BuyCost:
SellCost:
RiskFreeRate:
AssetMean:
AssetCovar:
TrackingError:
TrackingPort:
Turnover:
BuyTurnover:
SellTurnover:
Name:
NumAssets:
AssetList:
InitPort:
Alnequality:
blnequality:
AEquality:
bEquality:
LowerBound:
UpperBound:
LowerBudget:
UpperBudget:
GroupMatrix:
LowerGroup:
UpperGroup:
GroupA:
GroupB:
LowerRatio:
UpperRatio:

[4x1 double]
[4x4 double]

"Asset Allocation Portfolio”
4

{"Bonds® “Large-Cap Equities
[4x1 double]

[4x1 double]
[1
1

1
[2x4 double]

L1
[2x1 double]

Step 4. Validate the portfolio problenm.

An important step in portfolio optimization is to validate that the portfolio problem is
feasible and the main test is to ensure that the set of portfolios is nonempty and bounded.

"Small-Cap Equities”

"E...

Use the estimateBounds function to determine the bounds for the portfolio set. In this
case, Since both Ib and ub are finite, the set is bounded.

[Ib, ub] = estimateBounds(p);

display([1b, ub]);

ans =
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0.1500
0.0000
0.0000
0.0000

Step 5. Plotting the efficient frontier.

1.0000
0.8500
0.8500
0.3500

Given the constructed Portfolio object, use the plotFrontier function to view the
efficient frontier. Instead of using the default of 10 portfolios along the frontier, you can
display the frontier with 40 portfolios. Notice gross efficient portfolio returns fall between

approximately 6% and 16% per years.

plotFrontier(p, 40);
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Mean of Portfolio Returns
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Step 6. Evaluating gross vs. net portfolio returns.

The Portfolio object p does not include transaction costs so that the portfolio optimization
problem specified in p uses gross portfolio return as the return proxy. To handle net
returns, create a second Portfolio object g that includes transaction costs.

g = setCosts(p, UnitCost, UnitCost);
display(a);
q =

Portfolio with properties:

BuyCost: [4x1 double]
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SellCost:
RiskFreeRate:
AssetMean:
AssetCovar:
TrackingError:
TrackingPort:
Turnover:
BuyTurnover:
SellTurnover:
Name:
NumAssets:
AssetList:
InitPort:
Alnequality:
blnequality:
AEquality:
bEquality:
LowerBound:
UpperBound:
LowerBudget:
UpperBudget:
GroupMatrix:
LowerGroup:
UpperGroup:
GroupA:
GroupB:
LowerRatio:
UpperRatio:

[4x1 double]
L1

[4x1 double]
[4x4 double]

"Asset Allocation Portfolio”
4

{"Bonds® “Large-Cap Equities
[4x1 double]

[4x1 double]
[1
1

1
[2x4 double]

L1
[2x1 double]

"Small-Cap Equities”

Step 7. Analyzing descriptive properties of the Portfolio structures.

To be more concrete about the ranges of efficient portfolio returns and risks, use
the estimateFrontierLimits function to obtain portfolios at the endpoints of
the efficient frontier. Given these portfolios, compute their moments using the
estimatePortMoments function. The following code generates a table that lists the
risk and return of the initial portfolio as well as the gross and net moments of portfolio
returns for the portfolios at the endpoints of the efficient frontier:

[prs

pret
gret

kO, pret0O] =

estimatePortMoments(p, p-InitPort);

estimatePortReturn(p, p-estimateFrontierLimits);
estimatePortReturn(q, q-estimateFrontierLimits);

"E...
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fprintf("Annualized Portfolio Returns ...\n");

fprintf(” %6s %6s\n*", "Gross”, "Net");
fprintf("Initial Portfolio Return %6 .2F %% %6.2F %%\n",100*pret0,100*pret0)
fprintf("Minimum Efficient Portfolio Return %6.2F %% %6.2F %%\n",100*pret(1),100*qret
fprintf("Maximum Efficient Portfolio Return %6.2F %% %6.2F %%\n",100*pret(2),100*qgret
%

% The results shows that the cost to trade ranges from 14 to 19 basis

% points to get from the current portfolio to the efficient portfolios at

% the endpoints of the efficient frontier (these costs are the difference

% between gross and net portfolio returns.) In addition, notice that the

% maximum efficient portfolio return (13%) is less than the maximum asset

% return (18%) due to the constraints on equity allocations.

Annualized Portfolio Returns ...

Gross Net
Initial Portfolio Return 9.70 % 9.70 %
Minimum Efficient Portfolio Return 5.90 % 5.77 %
Maximum Efficient Portfolio Return 13.05 % 12.86 %

Step 8. Obtaining a Portfolio at the specified return level on the efficient frontier.

A common approach to select efficient portfolios is to pick a portfolio that has a desired
fraction of the range of expected portfolio returns. To obtain the portfolio that is 30% of
the range from the minimum to maximum return on the efficient frontier, obtain the
range of net returns in gret using the Portfolio object g and interpolate to obtain a 30%
level with the interpl function to obtain a portfolio qwgt.

Level = 0.3;

gqret = estimatePortReturn(q, g-estimateFrontierLimits);
gwgt = estimateFrontierByReturn(q, interpl([0, 1], gret, Level));
[arsk, qret] = estimatePortMoments(q, qwgt);

fprintf("Portfolio at %g%% return level on efficient frontier ...\n",100*Level);
fprintf("%10s %10s\n", "Return”, "Risk");
fprintf("%10.2F %10.2F\n",100*gret,100*qrsk);

display(qwgt);

% The target portfolio that is 30% of the range from minimum to maximum net
% returns has a return of 7.9% and a risk of 9.1%.

Portfolio at 30% return level on efficient frontier ...
Return Risk
7.90 9.09
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qwgt =

0.6252
0.1856
0.0695
0.1198

Step 9. Obtaining a Portfolio at the specified risk levels on the efficient frontier.

Although you could accept this result, suppose that you want to target values for portfolio
risk. Specifically, suppose that you have a conservative target risk of 10%, a moderate
target risk of 15%, and an aggressive target risk of 20% and you want to obtain portfolios
that satisfy each risk target. Use the estimateFrontierByRisk function to obtain
targeted risks specified in the variable TargetRisk. The resultant three efficient
portfolios are obtained in qwgt.

TargetRisk = [ 0.10; 0.15; 0.20 ];

gwgt = estimateFrontierByRisk(q, TargetRisk);

display(qwgt);

%

% Use the estimatePortRisk function to compute

% the portfolio risks for the three portfolios to confirm that the target
% risks have been attained:

display(estimatePortRisk(q, qwgt));

% Suppose that you want to shift from the current portfolio to the moderate
% portfolio. You can estimate the purchases and sales to get to this

% portfolio:

[gwgt, gbuy, gsell] = estimateFrontierByRisk(q, 0.15);

% If you average the purchases and sales for this portfolio, you can see

% that the average turnover is 17%, which is greater than the target of

% 15%:

disp(sum(gbuy + gsell)/2)

% Since you also want to ensure that average turnover is no more than 15%,
% you can add the average turnover constraint to the Portfolio object:

g = setTurnover(g, 0.15);
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[gwgt, gbuy, gsell] = estimateFrontierByRisk(q, 0.15);

% You can enter the estimated efficient portfolio with purchases and sales into the Bl«
gbuy(abs(gbuy) < 1.0e-5) = 0;
gsell(abs(gsell) < 1.0e-5) = 0; % zero out near O trade weights

Blotter._Port = qwgt;
Blotter.Buy = gbuy;
Blotter.Sell = gsell;

display(Blotter);

% The Buy and Sell elements of the Blotter are changes in portfolio weights that
% must be converted into changes in portfolio holdings to determine

% the trades. Since you are working with net portfolio returns, you

% must First compute the cost to trade from your initial portfolio to

% the new portfolio. This can be accomplished as follows:

TotalCost = Wealth * sum(Blotter.UnitCost .* (Blotter.Buy + Blotter.Sell))

% The cost to trade is $5,625, so that, in general, you would have to

% adjust your initial wealth accordingly before setting up your new

% portfolio weights. However, to keep the analysis simple, note that you

% have sufficient cash ($60,0000) set aside to pay the trading costs and

% that you will not touch the cash position to build up any positions in

% your portfolio. Thus, you can populate your blotter with the new

% portfolio holdings and the trades to get to the new portfolio without

% making any changes in your total invested wealth. First, compute portfolio holding:

Blotter_Holding = Wealth * (Blotter.Port ./ Blotter._Price);
% Compute number of shares to Buy and Sell in your Blotter:

Blotter._BuyShare = Wealth * (Blotter.Buy ./ Blotter_Price);
Blotter.SellShare = Wealth * (Blotter.Sell ./ Blotter_Price);

% Notice how you used an add-hoc truncation rule to obtain unit numbers of
% shares to buy and sell. Clean up the blotter by removing the unit costs
% and the buy and sell portfolio weights:

Blotter.Buy = [];

Blotter.Sell = [];
Blotter.UnitCost = [];
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qwgt =

0.5407 0.2020
0.2332 0.4000
0.0788 0.1280
0.1474 0.2700

ans

0.1000
0.1500
0.2000

0.1700

Blotter =

Bonds

Large-Cap Equities
Small-Cap Equities
Emerging Equities

Bonds

Large-Cap Equities
Small-Cap Equities
Emerging Equities

TotalCost =

5.6248e+03

0.1500
0.0318
0.4682
0.3500

Price
52.4
122.7
35.2
46.9

Port
0.18787
0.4
0.16213
0.25

Step 10. Displaying the final results.

InitHolding Ini

42938 0.3

24449 0.4

42612 0.2

15991 0.1
Buy Sell

0 0.11213

0 0

0 0.037871

0.15 0

UnitCost
0.001
0.001
0.001
0.004

The final result is a blotter that contains proposed trades to get from your current
portfolio to a moderate-risk portfolio. To make the trade, you would need to sell 16,049

shares of your bond asset and 8,069 shares of your small-cap equity asset and would need
to purchase 23,986 shares of your emerging equities asset.
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display(Blotter);

% The final plot uses the plotFrontier function to

% display the efficient frontier and the initial portfolio for the fully
% specified portfolio optimization problem. It also adds the location

% of the moderate-risk or final portfolio on the efficient frontier.

plotFrontier(q, 40);

hold on

scatter(estimatePortRisk(qg, gwgt), estimatePortReturn(q, qwgt), “filled®, "r7);

h = legend("Initial Portfolio®, “Efficient Frontier®, "Final Portfolio®, "location®, “I
set(h, “Fontsize®, 8);

hold off
Blotter =
Price InitHolding InitPort Port Holding
Bonds 52.4 42938 0.3 0.18787 26889
Large-Cap Equities 122.7 24449 0.4 0.4 24449
Small-Cap Equities 35.2 42612 0.2 0.16213 34543
Emerging Equities 46.9 15991 0.1 0.25 39977
BuyShare SellShare
Bonds 0 16049
Large-Cap Equities 0 0
Small-Cap Equities 0 8068.8
Emerging Equities 23986 0
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WMean of Portfolio Returns
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See Also

addGroups | estimateAssetMoments | estimateBounds |
estimateFrontierByRisk | estimateFrontierLimits | estimatePortRisk |
plotFrontier | Portfolio | setAssetMoments | setBounds

Related Examples

“Creating the Portfolio Object” on page 4-24

“Working with Portfolio Constraints” on page 4-57

“Validate the Portfolio Problem for Portfolio Object” on page 4-82
“Estimate Efficient Portfolios for Portfolio Object” on page 4-87
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. “Estimate Efficient Frontiers for Portfolio Object” on page 4-99
. “Postprocessing Results” on page 4-107

More About

. “Portfolio Object” on page 4-19

. “Portfolio Optimization Theory” on page 4-2
. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)
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Portfolio Optimization Against a Benchmark

Portfolio Optimization Against a Benchmark

Required products: MATLAB, Financial Toolbox, Optimization Toolbox, and
Statistics and Machine Learning Toolbox.

This example shows how to perform portfolio optimization using the Portfolio object
in Financial Toolbox. The example, in particular, demonstrates optimizing a portfolio to
maximize the information ratio relative to a market benchmark.

Access Research and Quantify Using Share
Financial and Optimization
Toolboxes
Use MATLAB Report the portfolio
xlsread optimization solution

Excel files with daily

Data Analysis
stock an ndex Y

. . & Visualization
closing prices —> —>
>

Financial
Modeling

es the information
ratio relative to the DJI
market benchmark

Step 1. Import historical data using MATLAB.

Import historical prices for the asset universe and the Dow Jones Industrial Average

(DJI) market benchmark. The data is imported into a dataset array from an Microsoft®
Excel spreadsheet using the MATLAB xlIsread function.

data = dataset("xlIsfTile”, “"dowPortfolio.xlIsx");
data(1:10,:)

ans =

Dates DJI AA AIG AXP BA C CAT DD DIS GE

*1/3/2006"° 10847 28.72 68.41 51.53 68.63 45.26 55.86 40.68 24.18 33.6
"1/4/2006" 10880 28.89 68.51 51.03 69.34 44.42 57.29 40.46 23.77 33.56
"1/5/2006" 10882 29.12 68.6 51.57 68.53 4465 57.29 40.38 24.19 33.47
"1/6/2006" 10959 29.02 68.89 51.75 67.57 4465 58.43 40.55 24.52 33.7
*1/9/2006"° 11012 29.37 68.57 53.04 67.01 4443 59.49 40.32 24.78 33.61
*1/10/2006" 11012 28.44 69.18 52.88 67.33 4457 59.25 40.2 25.09 33.43
*1/11/2006"° 11043 28.05 69.6 52.59 68.3 44 .98 59.28 38.87 25.33 33.66
*1/12/2006"° 10962 27.68 69.04 52.6 67.9 45.02 60.13 38.02 25.41 33.25
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"1/13/2006" 10960 27.81 68.84 52.5 67.7 44 .92 60.24 37.86 25.47 33.35
"1/17/2006" 10896 27.97 67.84 52.03 66.93 44.47 60.85 37.75 25.15 33.2

GM HD HON HPQ 1BM INTC INJ JPM KO MCD MMM MO
17.82 39.79 36.14 28.35 80.13 24.57 59.08 37.78 38.98 32.72 75.93 52.27
18.3 39.05 35.99 29.18 80.03 24.9 59.99 37.56 38.91 33.01 75.54 52.65
19.34 38.67 35.97 28.97 80.56 25.25 59.74 37.67 39.1 33.05 74.85 52.52
19.61 38.96 36.53 29.8 82.96 25.28 60.01 37.94 39.47 33.25 75.47 52.95

21.12 39.38 36.23 30.17 81.76 25.44 60.38 38.55 39.66 33.88 75.84 53.11

20.79 40.33 36.17 30.33 82.1 25.1 60.49 38.61 39.7 33.91 75.37 53.04

20.61 41.44 36.19 30.88 82.19 25.12 59.91 38.58 39.72 34.5 75.22 53.31
19.76 41.05 35.77 30.57 81.61 24.96 59.63 37.87 39.5 33.96 74.57 53.23
19.2 40.43 35.85 31.43 81.22 24.78 59.26 37.84 39.37 33.65 74.38 53.29
18.68 40.11 35.56 31.2 81.05 24.52 58.74 37.64 39.11 33.77 73.99 52.85
MRK MSFT PFE PG T uTx vz WMT XOM

30.73 26.19 22.16 56.38 22.7 54.94 26.79 44.9 56.64

31.08 26.32 22.88 56.48 22.87 54.61 27.58 44.99 56.74

31.13 26.34 22.9 56.3 22.92 54.41 27.9 44.38 56.45

31.08 26.26 23.16 56.24 23.21 54.58 28.01 4456 57.57

31.58 26.21 23.16 56.67 23.3 55.2 28.12 44.4 57.54

31.27 26.35 22.77 56.45 23.16 55.24 28.24 44 .54 57.99
31.39 26.63 23.06 56.65 23.34 54.41 28.58 45.23 58.38
31.41 26.48 22.9 56.02 23.24 53.9 28.69 4443 57.77
31.4 26.53 22.99 56.49 23.27 54.1 28.75 44.1 59.06
31.16 26.34 22.63 56.25 23.13 54.41 28.12 43.66 59.61

Separate the asset names, asset prices, and DJI benchmark prices from the dataset
array. The visualization shows the evolution of all the asset prices normalized to start at
unity.

dates = datenum(data.Dates);

benchPrice = data.DJI;
assetNames = data.Properties.VarNames(3:2:end);
assetPrice = double( data(:,3:2:end) );

assetP = bsxfun( @rdivide, assetPrice, assetPrice(1,:) );
benchmarkP = benchPrice / benchPrice(l);

plot(dates, assetP);

hold on;

plot(dates, benchmarkP, “LineWidth®, 3, "Color®, "k");
hold off;

xlabel ("Date”);

ylabel("Normalized Price®);

title("Normalized Asset Prices and Benchmark®);
datetick("x");

grid on;
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The bold line indicates the DJIA market benchmark.
Step 2. Compute returns and risk-adjusted returns.

Calculate the return series from the price series and compute asset moments (historical
returns and standard deviations). The visualization shows a scatter plot of the risk-
return characteristics of all the assets and the DJI market benchmark.

benchReturn tick2ret(benchPrice);
assetReturn tick2ret(assetPrice);
activReturn = assetReturn - repmat(benchReturn, 1, size(assetReturn,2));

Calculate historical statistics and plot the risk returns.

benchRetn = mean(benchReturn);
benchRisk = std(benchReturn);
assetRetn = mean(assetReturn);
assetRisk = std(assetReturn);

scale = 252;

assetRiskR = sqgrt(scale) * assetRisk;
benchRiskR = sqgrt(scale) * benchRisk;
assetReturnR = scale * assetRetn;
benchReturnR = scale * benchRetn;

4-159



4 Mean-Variance Portfolio Optimization Tools

scatter(assetRiskR, assetReturnR, 6, "m", "Filled");
hold on
scatter(benchRiskR, benchReturnR, 6, "g", "Filled");

for k = 1:length(assetNames)

text(assetRiskR(k) + 0.005, assetReturnR(k), assetNames{k}, “FontSize", 8);

end
text(benchRiskR + 0.005, benchReturnR, “Benchmark®, “Fontsize®, 8);
hold off;
xlabel ("Risk (Std Dev of Return)®);
ylabel ("Expected Return®);
grid on;
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Step 3. Set up a portfolio optimization.

Set up a portfolio optimization problem by populating the Portfol io object. In this
example, the expected returns and covariances of the assets in the portfolio are set to
their historical values.

p Portfolio("AssetList”, assetNames)

p:
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Portfolio with

BuyCost:
SellCost:
RiskFreeRate:
AssetMean:
AssetCovar:
Turnover:
TrackingError:
TrackingPort:
BuyTurnover:
SellTurnover:
Name:
NumAssets:
AssetList:
InitPort:
Alnequality:
blnequality:
AEquality:
bEquality:
LowerBound:
UpperBound:
LowerBudget:
UpperBudget:
GroupMatrix:
LowerGroup:
UpperGroup:
GroupA:
GroupB:
LowerRatio:
UpperRatio:

properties:

Set up default portfolio constraints (all weights sum to 1, no shorting, and 100%
investment in risky assets).

p
p

Portfolio with

BuyCost:
SellCost:
RiskFreeRate:
AssetMean:

setDefaultConstraints(p)

properties:

[1
[1
[1
[l
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AssetCovar: []
TrackingError: []
TrackingPort: []
Turnover: []
BuyTurnover: []
SellTurnover: []
Name: []
NumAssets: 15
AssetList: {1x15 cell}
InitPort: []
Alnequality: []
blnequality: []
AEquality: []
bEquality: []
LowerBound: [15x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

Add asset returns and covariance to the Portfol io object.
pAct = estimateAssetMoments(p, activReturn, "missingdata®, false)

pAct

Portfolio with properties:

BuyCost: []
SellCost: []
RiskFreeRate: []

AssetMean: [15x1 double]

AssetCovar: [15x15 double]
TrackingError: []
TrackingPort: []
Turnover: []
BuyTurnover: []
SellTurnover: []
Name: []
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NumAssets: 15
AssetList: {1x15 cell}
InitPort: []
Alnequality: []
blnequality: []
AEquality: []
bEquality: []
LowerBound: [15x1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []

Step 4. Compute the efficient frontier using the Portfol io object.

Compute the mean-variance efficient frontier of 20 optimal portfolios. Visualize the
frontier over the risk-return characteristics of the individual assets. Furthermore,
calculate and visualize the information ratio for each portfolio along the frontier.

wAct = estimateFrontier(pAct, 20); % Estimate weights

[portRiskAct, portRetnAct] = estimatePortMoments(pAct, wAct); % Get risk and return

if isa(p, Portfolio”)
% Extract asset moments & names
[assetReturnP, assetCovarP] = getAssetMoments(p);

assetRiskP = sqrt(diag(assetCovarP));
assetNames = p.AssetList;

else
assetNames = p;

end

if isa(p, Portfolio”)
% Extract asset moments & names
[assetReturnP, assetCovarP] = getAssetMoments(p);
assetRiskP = sqgrt(diag(assetCovarP));
assetNamesP = p._AssetlList;
else
assetNamesP = p;
end

% Rescale

assetRiskT = sqrt(scale) * assetRiskP;
portRiskT = sqgrt(scale) * portRiskAct;
assetReturnT = scale * assetReturnP;
portReturnT = scale * portRetnAct;
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subplot(2,1,1);

scatter(assetRiskT, assetReturnT, 6, "m", "Filled");
hold on
for k = 1:length(assetNames)
text(assetRisk(k) + 0.005, assetReturn(k), assetNames{k}, “FontSize", 8);
end
plot(portRiskT, portReturnT, “bo-", “MarkerFaceColor®, "b");
hold off;

xlabel ("Risk (Std Dev of Active Return)*);
ylabel ("Expected Active Return®);
grid on;

subplot(2,1,2);

plot(portRiskT, portReturnT./portRiskT, “bo-", “MarkerFaceColor®, "b");
xlabel ("Risk (Std Dev of Active Return)*);

ylabel (" Information Ratio®);

grid on;
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Step 5. Perform information ratio maximization using Optimization Toolbox.
Run a hybrid optimization to find the portfolio along the frontier with the maximum

information ratio. The information ratio is the ratio of relative return to relative risk
(known as “tracking error”). Whereas the Sharpe ratio looks at returns relative to a

4-164



Portfolio Optimization Against a Benchmark

riskless asset, the information ratio is based on returns relative to a risky benchmark,

in this case the DJI benchmark. This is done by running an optimization that finds

the optimal return constraint for which the portfolio optimization problem returns the
maximum information ratio portfolio. The portfolio optimization functions are called from
an objective function infoRatioTargetReturn that is optimized by the Optimization
Toolbox function fminbnd. The function infoRatioTargetReturn calculates a
minimum (active) risk portfolio given a target active return.

type infoRatioTargetReturn

function [infoRatio, wts] = infoRatioTargetReturn(targetReturn, portObj)
% Calculate information ratio for a target-return portfolio along the

% efficient frontier

wts = estimateFrontierByReturn(portObj, targetReturn);

portRiskAct = estimatePortRisk(portObj, wts);

infoRatio = targetReturn/portRiskAct;

The infoRatioTargetReturn function is called as an objective function in an
optimization routine (fminbnd) that seeks to find the target return that maximizes the
information ratio and minimizes a negative information ratio.

objFun = @(targetReturn) -infoRatioTargetReturn(targetReturn, pAct);
options = optimset("TolX", 1.0e-8);
[optPortRetn, ~, exitflag] = fminbnd(objFun, 0, max(portRetnAct), options);

Get weights, information ratio, and risk return for the optimal portfolio

[optInfoRatio, optWts] = infoRatioTargetReturn(optPortRetn, pAct);
optPortRisk = estimatePortRisk(pAct, optWts)

optPortRisk =
0.0040
Step 6. Plot the optimal porifolio.

Verify that the portfolio found is indeed the maximum information-ratio portfolio.

if isa(p, Portfolio”)
% Extract asset moments & names
[assetReturnQ, assetCovarQ] = getAssetMoments(p);
assetRiskQ = sqgrt(diag(assetCovarQ));
assetNamesQ = p.AssetList;
else
assetNamesQ = p;
end

% Rescale
assetRiskS = sqgrt(scale) * assetRiskQ;
portRiskS = sqgrt(scale) * portRiskAct;
optPortRiskS = sqgrt(scale) * optPortRisk;
assetReturnS = scale * assetReturnQ;
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portReturnsS
optPortReturnS

scale * portRetnAct;
scale * optPortRetn;

subplot(2,1,1);

scatter(assetRiskS, assetReturnS, 6, "m", “Filled");
hold on
for k = 1:length(assetNames)
text(assetRisk(k) + 0.005, assetReturn(k), assetNames{k}, “FontSize", 8);
end
plot(portRiskS, portReturnS, “bo-", “MarkerSize®, 4, “MarkerFaceColor®, "b");
plot(optPortRiskS, optPortReturnS, “ro-", “MarkerFaceColor®™, "r%);
hold off;

xlabel ("Risk (Std Dev of Active Return)*);
ylabel ("Expected Active Return®);
grid on;

subplot(2,1,2);

plot(portRiskS, portReturnS./portRiskS, "bo-", “MarkerSize", 4, “MarkerFaceColor~,
hold on

plot(optPortRiskS, optPortReturnS./optPortRiskS, “ro-", “MarkerFaceColor®, "r<);
hold off;

xlabel ("Risk (Std Dev of Active Return)*);
ylabel (" Information Ratio®);
title("Information Ratio with Optimal Portfolio®);

grid on;
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Step 7. Display the portfolio optimization solution.

Display the portfolio optimization solution.

assetlndx = optWts > .001;

results = dataset({assetNames(assetlndx)", “Asset"}, {optWts(assetlndx)*100, “Weights"});

disp("Maximum Information Ratio Portfolio:");

disp(results);

fprintf("Max. Info Ratio portfolio has expected active return %0.2f%%\n", optPortRetn*25200);
fprintf("Max. Info Ratio portfolio has expected tracking error of %0.2f%%\n", optPortRisk*sqrt(252)*100);

Maximum Information Ratio Portfolio:

Asset Weights
"AA* 1.539
“AXP*® 0.3555
“Cc- 9.6533
“DD* 4.0684
"HPQ™ 17.698
“JPM* 21.565
“MCD*® 26.736
“MO* 13.648
*MSFT* 2.6858
“UTX*® 2.0509

Max. Info Ratio portfolio has expected active return 12.14%
Max. Info Ratio portfolio has expected tracking error of 6.32%

See Also

fminbnd | inforatio | Portfolio

Related Examples

. “Creating the Portfolio Object” on page 4-24

. “Working with Portfolio Constraints” on page 4-57

. “Validate the Portfolio Problem for Portfolio Object” on page 4-82
. “Estimate Efficient Portfolios for Portfolio Object” on page 4-87

. “Estimate Efficient Frontiers for Portfolio Object” on page 4-99

. “Postprocessing Results” on page 4-107

. “Portfolio Optimization Examples” on page 4-114

. “Information Ratio” on page 7-7

More About

. “Overview of Performance Metrics” on page 7-2
. “Portfolio Object” on page 4-19
. “Portfolio Optimization Theory” on page 4-2

4-167



4 Mean-Variance Portfolio Optimization Tools

. “Portfolio Object Workflow” on page 4-17

External Websites
. Getting Started with Portfolio Optimization (13 min 31 sec)
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http://www.mathworks.com/videos/getting-started-with-portfolio-optimization-68762.html

CVaR Porifolio Optimization Tools

+ “Portfolio Optimization Theory” on page 5-2

+ “PortfolioCVaR Object Workflow” on page 5-16

+ “PortfolioCVaR Object” on page 5-18

* “Creating the PortfolioCVaR Object” on page 5-23

+ “Common Operations on the PortfolioCVaR Object” on page 5-31

+ “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-38
* “Working with CVaR Portfolio Constraints” on page 5-53

+ “Validate the CVaR Portfolio Problem” on page 5-75

+ “Estimate Efficient Portfolios for PortfolioCVaR Object” on page 5-80
+ “Estimate Efficient Frontiers for PortfolioCVaR Object” on page 5-92
+  “Postprocessing Results” on page 5-101
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Portfolio Optimization Theory

5-2

In this section...

“Portfolio Optimization Problems” on page 5-2

“Portfolio Problem Specification” on page 5-2

“Return Proxy” on page 5-3

“Risk Proxy” on page 5-5

“Portfolio Set for Optimization Using PortfolioCVaR Object” on page 5-7

“Default Portfolio Problem” on page 5-14

Portfolio Optimization Problems
Portfolio optimization problems involve identifying portfolios that satisfy three criteria:

*  Minimize a proxy for risk.
*  Match or exceed a proxy for return.

+ Satisfy basic feasibility requirements.

Portfolios are points from a feasible set of assets that constitute an asset universe.
A portfolio specifies either holdings or weights in each individual asset in the asset
universe. The convention is to specify portfolios in terms of weights, although the
portfolio optimization tools work with holdings as well.

The set of feasible portfolios is necessarily a nonempty, closed, and bounded set. The
proxy for risk is a function that characterizes either the variability or losses associated
with portfolio choices. The proxy for return is a function that characterizes either

the gross or net benefits associated with portfolio choices. The terms “risk” and “risk
proxy” and “return” and “return proxy” are interchangeable. The fundamental insight
of Markowitz (see “Portfolio Optimization” on page A-10) is that the goal of the

portfolio choice problem is to seek minimum risk for a given level of return and to seek
maximum return for a given level of risk. Portfolios satisfying these criteria are efficient
portfolios and the graph of the risks and returns of these portfolios forms a curve called
the efficient frontier.

Portfolio Problem Specification

To specify a portfolio optimization problem, you need the following:
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Proxy for portfolio return (z)

Proxy for portfolio risk (X)
Set of feasible portfolios (X), called a portfolio set

Financial Toolbox has three objects to solve specific types of portfolio optimization
problems:

The Portfolio object (Using Portfolio Objects) supports mean-variance portfolio
optimization (see Markowitz [46], [47] at “Portfolio Optimization” on page A-10).

This object has either gross or net portfolio returns as the return proxy, the variance
of portfolio returns as the risk proxy, and a portfolio set that is any combination of the
specified constraints to form a portfolio set.

The PortfolioCVaR object (Using PortfolioCVaR Objects) implements what is known
as conditional value-at-risk portfolio optimization (see Rockafellar and Uryasev [48],
[49] at “Portfolio Optimization” on page A-10), which is generally referred to as

CVaR portfolio optimization. CVaR portfolio optimization works with the same return
proxies and portfolio sets as mean-variance portfolio optimization but uses conditional
value-at-risk of portfolio returns as the risk proxy.

The PortfolioMAD object (Using PortfolioMAD Objects) implements what is known
as mean-absolute deviation portfolio optimization (see Konno and Yamazaki [50] at
“Portfolio Optimization” on page A-10), which is generally referred to as MAD
portfolio optimization. MAD portfolio optimization works with the same return
proxies and portfolio sets as mean-variance portfolio optimization but uses mean-
absolute deviation portfolio returns as the risk proxy.

Return Proxy

The proxy for portfolio return is a function H: X — R on a portfolio set X = R" that
characterizes the rewards associated with portfolio choices. In most cases, the proxy for
portfolio return has two general forms, gross and net portfolio returns. Both portfolio

return forms separate the risk-free rate ry so that the portfolio x € X contains only risky
assets.

Regardless of the underlying distribution of asset returns, a collection of S asset returns
Y1,...,ys has a mean of asset returns

1 S
m _ggy,sw
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and (sample) covariance of asset returns
1 S T
C :EZ(yS —m)ys—m)”.
s=1

These moments (or alternative estimators that characterize these moments) are used
directly in mean-variance portfolio optimization to form proxies for portfolio risk and
return.

Gross Portfolio Returns

The gross portfolio return for a portfolio xe X 1is
wx)=ry +(m—rn, T x,

where:

ro 1s the risk-free rate (scalar).

m 1s the mean of asset returns (n vector).

If the portfolio weights sum to 1, the risk-free rate is irrelevant. The properties in the
Portfolio object to specify gross portfolio returns are:

+ RiskFreeRate for ry
+ AssetMean for m

Net Porifolio Returns

The net portfolio return for a portfolio x€ X is
ulx)=ry +(m-r, DT 2 -5 max{0,x —xq} —sT max{0, xg —xl,

where:
ro 1s the risk-free rate (scalar).

m 1s the mean of asset returns (n vector).
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b 1s the proportional cost to purchase assets (n vector).
s is the proportional cost to sell assets (n vector).

You can incorporate fixed transaction costs in this model also. Though in this case, it is
necessary to incorporate prices into such costs. The properties in the Portfolio object to
specify net portfolio returns are:

+ RiskFreeRate for ry
+ AssetMean for m

* InitPort for x,

* BuyCost for b

+ SellCost for s

Risk Proxy

The proxy for portfolio risk is a function Y. : X — R on a portfolio set X < R" that
characterizes the risks associated with portfolio choices.

Variance

The variance of portfolio returns for a portfolio xe X is

Y(x)=xTCx
where C is the covariance of asset returns (n-by-n positive-semidefinite matrix).

The property in the Portfolio object to specify the variance of portfolio returns is
AssetCovar for C.

Although the risk proxy in mean-variance portfolio optimization is the variance of
portfolio returns, the square root, which is the standard deviation of portfolio returns,
is often reported and displayed. Moreover, this quantity is often called the “risk” of the
portfolio. For details, see Markowitz (“Portfolio Optimization” on page A-10).

Conditional Value-at-Risk

The conditional value-at-risk for a portfolio x € X , which is also known as expected
shortfall, is defined as
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1
CVaR, (x) = o f f(x,y) p(y)dy,
T r(x,9)2VaR, (x)

where:

a is the probability level such that 0 <a < 1.

f(x,y) is the loss function for a portfolio x and asset return y.
p(y) is the probability density function for asset return y.
VaR, is the value-at-risk of portfolio x at probability level a.

The value-at-risk is defined as
VaR, (x) =min{y : Pr[f(x,Y) < y]2 a}.
An alternative formulation for CVaR has the form:

1
l-o

CVaR,(x)=VaR, (x)+ I max{0,(f(x,y) - VaRy, (x))} p(y)dy

Rn

The choice for the probability level a is typically 0.9 or 0.95. Choosing a implies that

the value-at-risk VaR,(x) for portfolio x is the portfolio return such that the probability
of portfolio returns falling below this level is (1 —a). Given VaR,(x) for a portfolio x, the
conditional value-at-risk of the portfolio is the expected loss of portfolio returns above the
value-at-risk return.

Note: Value-at-risk is a positive value for losses so that the probability level a indicates
the probability that portfolio returns are below the negative of the value-at-risk.

The risk proxy for CVaR portfolio optimization is CVaR,(x) for a given portfolio x € X

and o €(0,1) . The value-at-risk, or VaR, for a given probability level is estimated
whenever CVaR is estimated.
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In addition, keep in mind that VaR and CVaR are sample estimators for VaR and CVaR
based on the given scenarios. Better scenario samples yield more reliable estimates of
VaR and CVaR.

For more information, see Rockafellar and Uryasev [48], [49] at “Portfolio Optimization”
on page A-10.

Mean Absolute-Deviation

The mean-absolute deviation (MAD) for a portfolio x € X 1is defined as

Y (%) =%§{‘(ys —m)Tx‘

where:

ys are asset returns with scenarios s = 1,...S (S collection of n vectors).
f(x,y) 1s the loss function for a portfolio x and asset return y.

m 1is the mean of asset returns (n vector).

such that
S
1
m== 2 ¥s
S s=1

For more information, see Konno and Yamazaki [50] at “Portfolio Optimization” on page
A-10.

Portfolio Set for Optimization Using PorifolioCVaR Object

The final element for a complete specification of a portfolio optimization problem is

the set of feasible portfolios, which is called a portfolio set. A portfolio set X < R" is
specified by construction as the intersection of sets formed by a collection of constraints
on portfolio weights. A portfolio set necessarily and sufficiently must be a nonempty,
closed, and bounded set.

5-7
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When setting up your portfolio set, ensure that the portfolio set satisfies these conditions.
The most basic or “default” portfolio set requires portfolio weights to be nonnegative
(using the lower-bound constraint) and to sum to 1 (using the budget constraint). The
most general portfolio set handled by the portfolio optimization tools can have any of
these constraints:

* Linear inequality constraints
* Linear equality constraints

*  Bound constraints

* Budget constraints

* Group constraints

*  Group ratio constraints

+ Average turnover constraints

*  One-way turnover constraints
Linear Inequality Constraints
Linear inequality constraints are general linear constraints that model relationships

among portfolio weights that satisfy a system of inequalities. Linear inequality
constraints take the form

AI.')C < b[

where:

x is the portfolio (n vector).

Ajis the linear inequality constraint matrix (n;-by-n matrix).

b;is the linear inequality constraint vector (n; vector).

n is the number of assets in the universe and n;is the number of constraints.

Portfolio object properties to specify linear inequality constraints are:

* Alnequality for A;
* blnequality for b;
* NumAssets for n
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The default is to ignore these constraints.
Linear Equality Constraints

Linear equality constraints are general linear constraints that model relationships among
portfolio weights that satisfy a system of equalities. Linear equality constraints take the
form

AEx = bE

where:

x is the portfolio (n vector).

Ap, 1s the linear equality constraint matrix (ng-by-n matrix).

br, is the linear equality constraint vector (ng vector).

n is the number of assets in the universe and ng is the number of constraints.
Portfolio object properties to specify linear equality constraints are:

+ AEquality for Ag
* bEquality for bg
* NumAssets for n

The default is to ignore these constraints.
Bound Constraints

Bound constraints are specialized linear constraints that confine portfolio weights to fall
either above or below specific bounds. Since every portfolio set must be bounded, it is
often a good practice, albeit not necessary, to set explicit bounds for the portfolio problem.
To obtain explicit bounds for a given portfolio set, use the estimateBounds function.
Bound constraints take the form

where:

x 1s the portfolio (n vector).
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I 1s the lower-bound constraint (n vector).
up 1s the upper-bound constraint (n vector).
n is the number of assets in the universe.

Portfolio object properties to specify bound constraints are:

+ LowerBound for I
* UpperBound for ug
* NumAssets for n

The default is to ignore these constraints.

The default portfolio optimization problem (see “Default Portfolio Problem” on page
5-14) has Iz = 0 with up set implicitly through a budget constraint.

Budget Constraints

Budget constraints are specialized linear constraints that confine the sum of portfolio
weights to fall either above or below specific bounds. The constraints take the form

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

ls1s the lower-bound budget constraint (scalar).

ug 1s the upper-bound budget constraint (scalar).

n is the number of assets in the universe.

Portfolio object properties to specify budget constraints are:

+ LowerBudget for Ig
* UpperBudget for ug
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* NumAssets for n
The default is to ignore this constraint.

The default portfolio optimization problem (see “Default Portfolio Problem” on page
5-14) has Ig= ug = 1, which means that the portfolio weights sum to 1. If the portfolio
optimization problem includes possible movements in and out of cash, the budget
constraint specifies how far portfolios can go into cash. For example, if [g=0 and ug=1,
then the portfolio can have 0—100% invested in cash. If cash is to be a portfolio choice,
set RiskFreeRate (ry) to a suitable value (see “Portfolio Problem Specification” on page
5-2 and “Working with a Riskless Asset” on page 5-48).

Group Constraints

Group constraints are specialized linear constraints that enforce “membership” among
groups of assets. The constraints take the form

ZG SGXSUG

where:

x 1s the portfolio (n vector).

lg 1s the lower-bound group constraint (ng vector).

ug 1s the upper-bound group constraint (ng vector).

G is the matrix of group membership indexes (ng-by-n matrix).

Each row of G identifies which assets belong to a group associated with that row. Each
row contains either Os or 1s with 1 indicating that an asset is part of the group or O
indicating that the asset is not part of the group.

Portfolio object properties to specify group constraints are:

+ GroupMatrix for G
* LowerGroup for /g
* UpperGroup for ug
* NumAssets for n

The default is to ignore these constraints.

5-11
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Group Ratio Constraints

Group ratio constraints are specialized linear constraints that enforce relationships
among groups of assets. The constraints take the form

lRi(GBx)i < (GAx)i < uRi(GBx)i

for i =1,..., ngr where:

x 1s the portfolio (n vector).

lg is the vector of lower-bound group ratio constraints (ng vector).

ug 1s the vector matrix of upper-bound group ratio constraints (ng vector).

G4 1s the matrix of base group membership indexes (ng-by-n matrix).

Gp is the matrix of comparison group membership indexes (nz-by-n matrix).
n is the number of assets in the universe and ng is the number of constraints.

Each row of G4 and Gp identifies which assets belong to a base and comparison group
associated with that row.

Each row contains either Os or 1s with 1 indicating that an asset is part of the group or O
indicating that the asset is not part of the group.

Portfolio object properties to specify group ratio constraints are:

* GroupA for G4

* GroupB for Gp

*+ LowerRatio for Ip
+ UpperRatio for ug
* NumAssets for n

The default is to ignore these constraints.
Average Turnover Constraints

Turnover constraint is a linear absolute value constraint that ensures estimated optimal
portfolios differ from an initial portfolio by no more than a specified amount. Although
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portfolio turnover is defined in many ways, the turnover constraints implemented in
Financial Toolbox computes portfolio turnover as the average of purchases and sales.
Average turnover constraints take the form

1.7
-1 - <7
2 | x —xp |

where:

x is the portfolio (n vector).

1 is the vector of ones (n vector).

X is the initial portfolio (n vector).

7 1s the upper bound for turnover (scalar).
n is the number of assets in the universe.

Portfolio object properties to specify the average turnover constraint are:

* Turnover forz
« InitPort for x,
* NumAssets for n

The default is to ignore this constraint.
One-way Turnover Constraints

One-way turnover constraints ensure that estimated optimal portfolios differ from an
initial portfolio by no more than specified amounts according to whether the differences
are purchases or sales. The constraints take the forms

17 xmax{0,x - x,} <75
17 x max{0,x, - x} < 74

where:

x 1s the portfolio (n vector)
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1 is the vector of ones (n vector).

Xy is the Initial portfolio (n vector).

Tp 1s the upper bound for turnover constraint on purchases (scalar).
Tg 1s the upper bound for turnover constraint on sales (scalar).

To specify one-way turnover constraints, use the following properties in the Portfolio or
PortfolioCVaR object:

* BuyTurnover for tp
+ SellTurnover for tg

* InitPort for x,

The default is to ignore this constraint.

Note: The average turnover constraint (see “Average Turnover Constraints” on page
5-12) with T is not a combination of the one-way turnover constraints with t =tg = tg.

Default Portfolio Problem

The default portfolio optimization problem has a risk and return proxy associated with
a given problem, and a portfolio set that specifies portfolio weights to be nonnegative
and to sum to 1. The lower bound combined with the budget constraint is sufficient to
ensure that the portfolio set is nonempty, closed, and bounded. The default portfolio
optimization problem characterizes a long-only investor who is fully invested in a
collection of assets.

*  For mean-variance portfolio optimization, it is sufficient to set up the default problem.
After setting up the problem, data in the form of a mean and covariance of asset
returns are then used to solve portfolio optimization problems.

*  For conditional value-at-risk portfolio optimization, the default problem requires the
additional specification of a probability level that must be set explicitly. Generally,
“typical” values for this level are 0.90 or 0.95. After setting up the problem, data in
the form of scenarios of asset returns are then used to solve portfolio optimization
problems.
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+ For MAD portfolio optimization, it is sufficient to set up the default problem. After
setting up the problem, data in the form of scenarios of asset returns are then used to
solve portfolio optimization problems.

See Also
PortfolioCVvaR

Related Examples
. “Creating the PortfolioCVaR Object” on page 5-23
. “Working with CVaR Portfolio Constraints” on page 5-53

More About

. “PortfolioCVaR Object” on page 5-18
. “PortfolioCVaR Object Workflow” on page 5-16

External Websites
. CVaR Portfolio Optimization (5 min 33 sec)

. Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50
min 42 sec)
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PortfolioCVaR Object Workflow

The PortfolioCVaR object workflow for creating and modeling a mean-variance portfolio

5-16

1S:

1 Create a CVaR Portfolio.
Create a PortfolioCVaR object for conditional value-at-risk (CVaR) portfolio
optimization. For more information, see “Creating the PortfolioCVaR Object” on page
5-23.

2 Define asset returns and scenarios.
Evaluate scenarios for portfolio asset returns, including assets with missing data
and financial time series data. For more information, see “Asset Returns and
Scenarios Using PortfolioCVaR Object” on page 5-38.

3 Specify the CVaR Portfolio Constraints.
Define the constraints for portfolio assets such as linear equality and inequality,
bound, budget, group, group ratio, and turnover constraints. For more information,
see “Working with CVaR Portfolio Constraints” on page 5-53.

4 Validate the CVaR Portfolio.
Identify errors for the portfolio specification. For more information, see “Validate the
CVaR Portfolio Problem” on page 5-75.

5 Estimate the efficient portfolios and frontiers.
Analyze the efficient portfolios and efficient frontiers for a CVaR portfolio. For
more information, see “Estimate Efficient Portfolios for PortfolioCVaR Object” on
page 5-80 and “Estimate Efficient Frontiers for PortfolioCVaR Object” on page
5-92.

6 Postprocess the results.
Use the efficient portfolios and efficient frontiers results to set up trades. For more
information, see “Postprocessing Results” on page 5-101.

More About

“Portfolio Optimization Theory” on page 5-2
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External Websites
. CVaR Portfolio Optimization (5 min 33 sec)

. Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50
min 42 sec)
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PortfolioCVaR Object
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In this section...

“PortfolioCVaR Object Properties and Functions” on page 5-18
“Working with PortfolioCVaR Objects” on page 5-18

“Setting and Getting Properties” on page 5-19

“Displaying PortfolioCVaR Objects” on page 5-20

“Saving and Loading PortfolioCVaR Objects” on page 5-20
“Estimating Efficient Portfolios and Frontiers” on page 5-20
“Arrays of PortfolioCVaR Objects” on page 5-20

“Subclassing PortfolioCVaR Objects” on page 5-21

“Conventions for Representation of Data” on page 5-21

PortfolioCVaR Obiject Properties and Functions

The PortfolioCVaR object implements conditional value-at-risk (CVaR) portfolio
optimization. Every property and function of the PortfolioCVaR object is public, although
some properties and functions are hidden. SeePortfol ioCVaR for the properties and
functions of a PortfolioCVaR object. The PortfolioCVaR object is a value object where
every instance of the object is a distinct version of the object. Since the PortfolioCVaR
object is also a MATLAB object, it inherits the default functions associated with
MATLAB objects.

Working with PortfolioCVaR Objects

The PortfolioCVaR object and its functions are an interface for conditional value-at-risk
portfolio optimization. So, almost everything you do with the PortfolioCVaR object can be
done using the functions. The basic workflow is:

1  Design your portfolio problem.

2 Use the PortfolioCVaR function to create the PortfolioCVaR object or use the
various set functions to set up your portfolio problem.

3 Use estimate functions to solve your portfolio problem.

In addition, functions are available to help you view intermediate results and to diagnose
your computations. Since MATLAB features are part of a PortfolioCVaR object, you can
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save and load objects from your workspace and create and manipulate arrays of objects.
After settling on a problem, which, in the case of CVaR portfolio optimization, means
that you have either scenarios, data, or moments for asset returns, a probability level,
and a collection of constraints on your portfolios, use the PortfolioCVaR function to set
the properties for the PortfolioCVaR object.

ThePortfolioCVaR function lets you create an object from scratch or update an existing
object. Since the PortfolioCVaR object is a value object, it is easy to create a basic object,
then use functions to build upon the basic object to create new versions of the basic
object. This is useful to compare a basic problem with alternatives derived from the basic
problem. For details, see “Creating the PortfolioCVaR Object” on page 5-23.

Setting and Getting Properties

You can set properties of a PortfolioCVaR object using either the PortfolioCVaR
function or various set functions.

Note: Although you can also set properties directly, it is not recommended since error-
checking is not performed when you set a property directly.

The PortfolioCVaR function supports setting properties with name-value pair
arguments such that each argument name is a property and each value is the

value to assign to that property. For example, to set the LowerBound, Budget, and
ProbabilitylLevel properties in an existing PortfolioCVaR object p, use the syntax:

p = PortfolioCVaR(p, “LowerBound®, 0, "Budget®, “ProbabilitylLevel®, 0.95);

In addition to the Portfol 1oCVaR function, which lets you set individual properties

one at a time, groups of properties are set in a PortfolioCVaR object with various “set”
and “add” functions. For example, to set up an average turnover constraint, use the
setTurnover function to specify the bound on portfolio turnover and the initial portfolio.
To get individual properties from a PortfolioCVaR object, obtain properties directly or use
an assortment of “get” functions that obtain groups of properties from a PortfolioCVaR
object. The Portfol 1oCVaR function and set functions have several useful features:

* The PortfolioCVaR function and set functions try to determine the dimensions of
your problem with either explicit or implicit inputs.

* The PortfolioCVaR function and set functions try to resolve ambiguities with
default choices.
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* The PortfolioCVaR function and set functions perform scalar expansion on arrays
when possible.

* The CVaR functions try to diagnose and warn about problems.

Displaying PortfolioCVaR Obijects

The PortfolioCVaR object uses the default display functions provided by MATLAB, where
display and disp display a PortfolioCVaR object and its properties with or without the
object variable name.

Saving and Loading PortfolioCVaR Objects

Save and load PortfolioCVaR objects using the MATLAB save and load commands.

Estimating Efficient Porifolios and Frontiers

Estimating efficient portfolios and efficient frontiers is the primary purpose of the CVaR
portfolio optimization tools. A collection of “estimate” and “plot” functions provide ways
to explore the efficient frontier. The “estimate” functions obtain either efficient portfolios
or risk and return proxies to form efficient frontiers. At the portfolio level, a collection of
functions estimates efficient portfolios on the efficient frontier with functions to obtain
efficient portfolios:

+ At the endpoints of the efficient frontier

+ That attain targeted values for return proxies

* That attain targeted values for risk proxies

+ Along the entire efficient frontier

These functions also provide purchases and sales needed to shift from an initial or
current portfolio to each efficient portfolio. At the efficient frontier level, a collection of
functions plot the efficient frontier and estimate either risk or return proxies for efficient

portfolios on the efficient frontier. You can use the resultant efficient portfolios or risk
and return proxies in subsequent analyses.

Arrays of PortfolioCVaR Objects

Although all functions associated with a PortfolioCVaR object are designed to work on a
scalar PortfolioCVaR object, the array capabilities of MATLAB enables you to set up and
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work with arrays of PortfolioCVaR objects. The easiest way to do this is with the repmat
function. For example, to create a 3-by-2 array of PortfolioCVaR objects:

p = repmat(PortfolioCVaR, 3, 2);

disp(p)
After setting up an array of PortfolioCVaR objects, you can work on individual

PortfolioCVaR objects in the array by indexing. For example:

p(i,j) = PortfolioCVaR(p(i,j), --- );
This example calls the PortfolioCVaR function for the (i,J) element of a matrix of
PortfolioCVaR objects in the variable p.

If you set up an array of PortfolioCVaR objects, you can access properties of a particular
PortfolioCVaR object in the array by indexing so that you can set the lower and upper
bounds Ib and ub for the (i,J,k) element of a 3-D array of PortfolioCVaR objects with

p(i,j,.k) = setBounds(p(i,j,k), b, ub);
and, once set, you can access these bounds with

[Ib, ub] = getBounds(p(i,j.k)):
PortfolioCVaR object functions work on only one PortfolioCVaR object at a time.

Subclassing PorifolioCVaR Objects

You can subclass the PortfolioCVaR object to override existing functions or to add new
properties or functions. To do so, create a derived class from the PortfolioCVaR class.
This gives you all the properties and functions of thePortfol ioCVaR class along with
any new features that you choose to add to your subclassed object. ThePortfol ioCVaR
class is derived from an abstract class called AbstractPortfolio. Because of this,
you can also create a derived class from AbstractPortfolio that implements an
entirely different form of portfolio optimization using properties and functions of
theAbstractPortfolio class.

Conventions for Representation of Data

The CVaR portfolio optimization tools follow these conventions regarding the
representation of different quantities associated with portfolio optimization:

+ Asset returns or prices for scenarios are in matrix form with samples for a given asset
going down the rows and assets going across the columns. In the case of prices, the
earliest dates must be at the top of the matrix, with increasing dates going down.
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+ Portfolios are in vector or matrix form with weights for a given portfolio going down
the rows and distinct portfolios going across the columns.

+ Constraints on portfolios are formed in such a way that a portfolio is a column vector.

* Portfolio risks and returns are either scalars or column vectors (for multiple portfolio
risks and returns).

See Also
PortfolioCVaR

Related Examples
. “Creating the PortfolioCVaR Object” on page 5-23
. “Working with CVaR Portfolio Constraints” on page 5-53

More About

. “Portfolio Optimization Theory” on page 5-2
. “PortfolioCVaR Object Workflow” on page 5-16

External Websites
. CVaR Portfolio Optimization (5 min 33 sec)

. Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50
min 42 sec)


http://www.mathworks.com/videos/cvar-portfolio-optimization-71631.html
http://www.mathworks.com/videos/analyzing-investment-strategies-with-cvar-portfolio-optimization-in-matlab-81942.html
http://www.mathworks.com/videos/analyzing-investment-strategies-with-cvar-portfolio-optimization-in-matlab-81942.html
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Creating the PorifolioCVaR Obiject

In this section...

“Syntax” on page 5-23
“PortfolioCVaR Problem Sufficiency” on page 5-24
“PortfolioCVaR Function Examples” on page 5-24

To create a fully specified CVaR portfolio optimization problem, instantiate the
PortfolioCVaR object using the Portfol ioCVaR function. For information on the
workflow when using PortfolioCVaR objects, see “PortfolioCVaR Object Workflow” on
page 5-16.

Syntax

Use the PortfolioCVaR function to create an instance of an object of the
PortfolioCVaR class. You can use the Portfol ioCVaR function in several ways. To set
up a portfolio optimization problem in a PortfolioCVaR object, the simplest syntax is:

p = PortfolioCVaR;
This syntax creates a PortfolioCVaR object, p, such that all object properties are empty.

The Portfol ioCVaR function also accepts collections of argument name-value pair
arguments for properties and their values. The Portfol ioCVaR function accepts inputs
for public properties with the general syntax:

p = PortfolioCVaR("propertyl®, valuel, "property2®, value2, ... );

If a PortfolioCVaR object already exists, the syntax permits the first (and only the first
argument) of the Portfol ioCVaR function to be an existing object with subsequent
argument name-value pair arguments for properties to be added or modified. For
example, given an existing PortfolioCVaR object in p, the general syntax is:

p = PortfolioCvaR(p, "propertyl®, valuel, "property2", value2, ... );

Input argument names are not case-sensitive, but must be completely specified. In
addition, several properties can be specified with alternative argument names (see
“Shortcuts for Property Names” on page 5-28). The Portfol ioCVaR function tries
to detect problem dimensions from the inputs and, once set, subsequent inputs can
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undergo various scalar or matrix expansion operations that simplify the overall process
to formulate a problem. In addition, a PortfolioCVaR object is a value object so that,
given portfolio p, the following code creates two objects, p and g, that are distinct:

q = PortfolioCVaR(p, -.-.)

PortfolioCVaR Problem Sufficiency

A CVaR portfolio optimization problem is completely specified with the PortfolioCVaR
object if the following three conditions are met:

You must specify a collection of asset returns or prices known as scenarios such

that all scenarios are finite asset returns or prices. These scenarios are meant to be
samples from the underlying probability distribution of asset returns. This condition
can be satisfied by the setScenarios function or with several canned scenario
simulation functions.

The set of feasible portfolios must be a nonempty compact set, where a compact set

is closed and bounded. You can satisfy this condition using an extensive collection of
properties that define different types of constraints to form a set of feasible portfolios.
Since such sets must be bounded, either explicit or implicit constraints can be
imposed and several tools, such as the estimateBounds function, provide ways to
ensure that your problem is properly formulated.

You must specify a probability level to locate the level of tail loss above which the
conditional value-at-risk is to be minimized. This condition can be satisfied by the
setProbabilityLevel function.

Although the general sufficient conditions for CVaR portfolio optimization go beyond
the first three conditions, the PortfolioCVaR object handles all these additional
conditions.

PortfolioCVaR Function Examples

If you create a PortfolioCVaR object, p, with no input arguments, you can display it using
disp:

p
di

= PortfolioCVaR;
sp(p);

PortfolioCVaR with properties:
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BuyCost:
SellCost:
RiskFreeRate:
ProbabilityLevel:
Turnover:
BuyTurnover:
SellTurnover:
NumScenarios:
Name:
NumAssets:
AssetList:
InitPort:
Alnequality:
blnequality:
AEquality:
bEquality:
LowerBound:
UpperBound:
LowerBudget:
UpperBudget:
GroupMatrix:
LowerGroup:
UpperGroup:
GroupA:
GroupB:
LowerRatio:
UpperRatio:

The approaches listed provide a way to set up a portfolio optimization problem with the
PortfolioCVaR function. The custom set functions offer additional ways to set and

modify collections of properties in the PortfolioCVaR object.

Using the PortfolioCVaR Function for a Single-Step Setup

You can use thePortfolioCVaR function to directly set up a “standard” portfolio
optimization problem. Given scenarios of asset returns in the variable AssetScenarios,

this problem is completely specified as follows:

m
[

m
[

AssetScenarios = mvnrnd(m, C, 20000);

[ 0.05; 0.1; 0.12; 0.18 ];

[ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m/12;

C/12;
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p = PortfolioCVaR("Scenarios”, AssetScenarios, ...
"LowerBound®, O, "LowerBudget®, 1, “UpperBudget®, 1, ...
“ProbabilityLevel”, 0.95);

The LowerBound property value undergoes scalar expansion since AssetScenarios
provides the dimensions of the problem.

You can use dot notation with the function plotFrontier.

p-plotFrontier;

(4] Figurel EI@
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Conditional Value-at-Risk of Portfolio

Using the PortfolioCVaR Function with a Sequence of Steps

An alternative way to accomplish the same task of setting up a “standard” CVaR portfolio
optimization problem, given AssetScenarios variable is:

[ 0.05; 0.1; 0.12; 0.18 ];
[ 0.0064 0.00408 0.00192 O;
408 0.0289 0.0204 0.0119;
192 0.0204 0.0576 0.0336;
0

m
C
0.
0
0 119 0.0336 0.1225 ];

0
-0
0
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m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = PortfolioCvVaR(p, "“LowerBound®, 0);
p = PortfolioCvVaR(p, "LowerBudget®, 1, “UpperBudget”
p = setProbabilityLevel(p, 0.95);
plotFrontier(p);
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, 1);

This way works because the calls to the are in this particular order. In this case, the call
to initialize AssetScenarios provides the dimensions for the problem. If you were to
do this step last, you would have to explicitly dimension the LowerBound property as

follows:

m= [ 0.05; 0.1; 0.12; 0.18 ];
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C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

PortfolioCVaR;

PortfolioCvaR(p, “LowerBound®, zeros(size(m)));
PortfolioCvVaR(p, "LowerBudget®, 1, “UpperBudget®, 1);
setProbabilityLevel(p, 0.95);

setScenarios(p, AssetScenarios);

T T TTDOT
o

Note: If you did not specify the size of LowerBound but, instead, input a scalar
argument, the Portfol ioCVaR function assumes that you are defining a single-asset
problem and produces an error at the call to set asset scenarios with four assets.

Shortcuts for Property Names

The PortfolioCVaR function has shorter argument names that replace longer
argument names associated with specific properties of the PortfolioCVaR object. For
example, rather than enter "ProbabilityLevel ", the PortfolioCVaR function
accepts the case-insensitive name "plevel " to set the ProbabilityLevel property in
a PortfolioCVaR object. Every shorter argument name corresponds with a single property
in the Portfol 1oCVaR function. The one exception is the alternative argument name
"budget”, which signifies both the LowerBudget and UpperBudget properties. When
"budget”® is used, then the LowerBudget and UpperBudget properties are set to the
same value to form an equality budget constraint.

Shortcuts for Property Names

Shortcut Argument Name Equivalent Argument / Property Name
ae AEquality

ai Alnequality

assetnames or assets AssetList

be bEquality
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Shortcut Argument Name Equivalent Argument / Property Name
bi blnequality

budget UpperBudget and LowerBudget
group GroupMatrix

Ib LowerBound

n or num NumAssets

level, problevel, or plevel |ProbabilitylLevel

rfr RiskFreeRate
scenario or Scenarios
assetscenarios

ub UpperBound

For example, this call to the Portfol ioCVaR function uses these shortcuts for
properties:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR("scenario”, AssetScenarios, "Ib", 0, “budget®, 1, “plevel®, 0.95);
plotFrontier(p);

Direct Setting of Portfolio Object Properties

Although not recommended, you can set properties directly using dot notation, however
no error-checking is done on your inputs:

m= [ 0.05; 0.1; 0.12; 0.18 ];

C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);
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PortfolioCVaR;

©
1l

p = setScenarios(p, AssetScenarios);
p-ProbabilitylLevel = 0.95;

p-LowerBudget 1;
p-UpperBudget 1;
p-LowerBound = zeros(size(m));

plotFrontier(p);

Note: Scenarios cannot be assigned directly to a PortfolioCVaR object. Scenarios must
always be set through either the PortfolioCVaR function, the setScenarios function,
or any of the scenario simulation functions.

See Also

estimateBounds | PortfolioCVaR

Related Examples
. “Common Operations on the PortfolioCVaR Object” on page 5-31
. “Working with CVaR Portfolio Constraints” on page 5-53

More About

. “PortfolioCVaR Object” on page 5-18

. “Portfolio Optimization Theory” on page 5-2

. “PortfolioCVaR Object Workflow” on page 5-16

External Websites
. CVaR Portfolio Optimization (5 min 33 sec)

. Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50
min 42 sec)


http://www.mathworks.com/videos/cvar-portfolio-optimization-71631.html
http://www.mathworks.com/videos/analyzing-investment-strategies-with-cvar-portfolio-optimization-in-matlab-81942.html
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Common Operations on the PortfolioCVaR Object

In this section...

“Naming a PortfolioCVaR Object” on page 5-31
“Configuring the Assets in the Asset Universe” on page 5-31
“Setting Up a List of Asset Identifiers” on page 5-32
“Truncating and Padding Asset Lists” on page 5-33

“Setting Up an Initial or Current Portfolio” on page 5-34

Naming a PortfolioCVaR Object

To name a PortfolioCVaR object, use the Name property. Name is informational and has
no effect on any portfolio calculations. If the Name property is nonempty, Name is the title
for the efficient frontier plot generated by plotFrontier. For example, if you set up an
asset allocation fund, you could name the PortfolioCVaR object Asset Allocation Fund:

p = PortfolioCVaR("Name®, "Asset Allocation Fund®);
disp(p-Name);

Asset Allocation Fund

Configuring the Assets in the Asset Universe

The fundamental quantity in the PortfolioCVaR object is the number of assets in the
asset universe. This quantity is maintained in the NumAssets property. Although you
can set this property directly, it is usually derived from other properties such as the
number of assets in the scenarios or the initial portfolio. In some instances, the number
of assets may need to be set directly. This example shows how to set up a PortfolioCVaR
object that has four assets:

p = PortfolioCVaR("NumAssets”, 4);
disp(p-NumAssets);
4

After setting the NumAssets property, you cannot modify it (unless no other properties
are set that depend on NumAssets). The only way to change the number of assets in
an existing PortfolioCVaR object with a known number of assets is to create a new
PortfolioCVaR object.
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Setting Up a List of Asset Identifiers

When working with portfolios, you must specify a universe of assets. Although you can
perform a complete analysis without naming the assets in your universe, it is helpful to
have an identifier associated with each asset as you create and work with portfolios. You
can create a list of asset identifiers as a cell vector of strings in the property AssetList.
You can set up the list using the next two methods.

Setting up Asset Lists Using the PortfolioCVaR Function

Suppose that you have a PortfolioCVaR object, p, with assets with symbols "AA"', "BA",
"CAT", "DD", and "ETR". You can create a list of these asset symbols in the object using
the PortfolioCVaR function:

p = PortfolioCvaR("assetlist”, { "AA", "BA", "CAT", "DD", "ETR" });
disp(p-AssetList);

"AA* "BA* "CAT*™ “DD* "ETR*

Notice that the property AssetList is maintained as a cell array that contains strings,
and that it is necessary to pass a cell array into the Portfol 1oCVaR function to set
AssetList. In addition, notice that the property NumAssets is set to 5 based on the
number of symbols used to create the asset list:

disp(p-NumAssets);

5
Setting Up Asset Lists Using the setAssetList Function

You can also specify a list of assets using the setAssetList function. Given the list of
asset symbols "AA", "BA", "CAT", "DD", and"ETR", you can use setAssetList with:

PortfolioCVaR;

p =

p = setAssetList(p, { "AA", "BA", "CAT", "DD", "ETR" });
disp(p-AssetList);

"AA* "BA* "CAT* “DD* "ETR™

setAssetList also enables you to enter symbols directly as a comma-separated list
without creating a cell array of strings. For example, given the list of assets symbols
"AA", "BA", "CAT", "DD", and "ETR", use setAssetList:

p = PortfolioCVaR;
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p = setAssetList(p, "AA", "BA", "CAT", "DD", "ETR");
disp(p-AssetList);

"AA* "BA* "CAT" "DD* "ETR*®

setAssetlList has many additional features to create lists of asset identifiers. If you use
setAssetList with just a PortfolioCVaR object, it creates a default asset list according
to the name specified in the hidden public property defaultforAssetList (which is
"Asset" by default). The number of asset names created depends on the number of
assets in the property NumAssets. If NumAssets is not set, then NumAssets is assumed
to be 1.

For example, if a PortfolioCVaR object p is created with NumAssets = 5, then this code
fragment shows the default naming behavior:

p = PortfolioCvaR("numassets”,5);
p = setAssetList(p);

disp(p-AssetList);

"Assetl” "Asset2” "Asset3” "Asset4” "Asset5”

Suppose that your assets are, for example, ETFs and you change the hidden property
defaultforAssetList to "ETF", you can then create a default list for ETFs:

= PortfolioCvVaR("numassets”,5);
defaultforAssetList = "ETF";

= setAssetList(p);

sp(p-AssetList);

TF1* "ETF2* "ETF3* "ETF4* "ETF5"

p
p-
p
d

:
Truncating and Padding Asset Lists

If the NumAssets property is already set and you pass in too many or too few identifiers,
the PortfolioCVaR function, and the setAssetList function truncate or pad the list
with numbered default asset names that use the name specified in the hidden public
property defaultforAssetList. If the list is truncated or padded, a warning message
indicates the discrepancy. For example, assume that you have a PortfolioCVaR object
with five ETFs and you only know the first three CUSIPs "921937835", "922908769",
and "922042775". Use this syntax to create an asset list that pads the remaining asset
identifiers with numbered *UnknownCUSIP* placeholders:

PortfolioCVaR(“numassets”,5);

p:
p-defaultforAssetList = “UnknownCUSIP";
p = setAssetList(p, "921937835", "922908769", <922042775");
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disp(p-AssetList);

Warning: Input list of assets has 2 too few identifiers. Padding with numbered assets.
> In PortfolioCVaR.setAssetList at 118
"921937835" "922908769" "922042775" “UnknownCUSIP4*" “UnknownCUSIP5*"

Alternatively, suppose that you have too many identifiers and need only the first four
assets. This example illustrates truncation of the asset list using the Portfol ioCVaR
function:

p = PortfolioCvVaR("numassets”,4);

p = PortfolioCVaR(p, "assetlist®, { "AGG", "EEM", °"MDY", °"SPY", "VEU" });
disp(p-AssetList);

Warning: AssetList has 1 too many identifiers. Using first 4 assets.
> In PortfolioCVaR.checkarguments at 399
In PortfolioCVaR.PortfolioCVaR>PortfolioCVaR.PortfolioCVaR at 195
“AGG* “EEM* “MDY* “SPY*

The hidden public property uppercaseAssetList is a Boolean flag to specify whether
to convert asset names to uppercase letters. The default value for uppercaseAssetList
is False. This example shows how to use the uppercaseAssetList flag to force
identifiers to be uppercase letters:

p = PortfolioCVaR;

p.uppercaseAssetList = true;

p = setAssetList(p, { "aa®, "ba", “cat®, "dd", “etr® });
disp(p-AssetList);

"AA* "BA* "CAT*" "DD*" "ETR"

Setting Up an Initial or Current Portfolio

In many applications, creating a new optimal portfolio requires comparing the new
portfolio with an initial or current portfolio to form lists of purchases and sales. The
PortfolioCVaR object property InitPort lets you identify an initial or current portfolio.
The initial portfolio also plays an essential role if you have either transaction costs or
turnover constraints. The initial portfolio need not be feasible within the constraints

of the problem. This can happen if the weights in a portfolio have shifted such that
some constraints become violated. To check if your initial portfolio is feasible, use the
checkFeasibility function described in “Validating CVaR Portfolios” on page 5-77.
Suppose that you have an initial portfolio in X0, then use the PortfolioCVaR function
to set up an initial portfolio:

x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = PortfolioCvaR("InitPort®, x0);
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disp(p-InitPort);

0.3000
0.2000
0.2000

0

As with all array properties, you can set InitPort with scalar expansion. This is helpful
to set up an equally weighted initial portfolio of, for example, 10 assets:

p = PortfolioCvaR("NumAssets”, 10, "InitPort", 1/10);
disp(p-InitPort);

o

-1000
-1000
-1000
-1000
-1000
-1000
-1000
-1000
-1000
-1000

cNoNeoloNoNoNoNoNe]

To clear an initial portfolio from your PortfolioCVaR object, use either the
PortfolioCVaR function or the setInitPort function with an empty input for the
InitPort property. If transaction costs or turnover constraints are set, it is not possible
to clear the InitPort property in this way. In this case, to clear InitPort, first clear
the dependent properties and then clear thelnitPort property.

The InitPort property can also be set with setlnitPort which lets you specify the
number of assets if you want to use scalar expansion. For example, given an initial
portfolio in X0, use setlnitPort to set the InitPort property:

p = PortfolioCVaR;

x0 = [ 0.3; 0.2; 0.2; 0.0 ];
p = setlnitPort(p, x0);
disp(p-InitPort);

0.3000
0.2000
0.2000

0

To create an equally weighted portfolio of four assets, use setInitPort:
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p = PortfolioCVaR;
p = setlnitPort(p, 174, 4);
disp(p-InitPort);

0.2500

0.2500

0.2500

0.2500

PortfolioCVaR object functions that work with either transaction costs or turnover
constraints also depend on the InitPort property. So, the set functions for transaction
costs or turnover constraints permit the assignment of a value for the InitPort
property as part of their implementation. For details, see “Working with Average
Turnover Constraints Using PortfolioCVaR Object” on page 5-69, “Working with
One-way Turnover Constraints Using PortfolioCVaR Object” on page 5-71, and
“Working with Transaction Costs” on page 5-48. If either transaction costs or

turnover constraints are used, then the InitPort property must have a nonempty
value. Absent a specific value assigned through the PortfolioCVaR function or various
set functions, the PortfolioCVaR object sets InitPort to O and warns if BuyCost,
SellCost, or Turnover properties are set. This example shows what happens if you
specify an average turnover constraint with an initial portfolio:

p = PortfolioCvVaR("Turnover®, 0.3, "InitPort™, [ 0.3; 0.2; 0.2; 0.0 D;
disp(p-InitPort);

0.3000
0.2000
0.2000
0
In contrast, this example shows what happens if an average turnover constraint is
specified without an initial portfolio:

p = PortfolioCvVaR("Turnover®, 0.3);
disp(p-InitPort);

Warning: InitPort and NumAssets are empty and either transaction costs or turnover constraints specified.
Will set NumAssets = 1 and InitPort = O.

> In PortfolioCVaR.checkarguments at 322

In PortfolioCVaR.PortfolioCVaR>PortfolioCVaR.PortfolioCvVaR at 195
0

See Also

checkFeasibility | estimateBounds | PortfolioCVaR | setAssetList |
setlnitPort
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Related Examples
. “Working with CVaR Portfolio Constraints” on page 5-53
. “Asset Returns and Scenarios Using PortfolioCVaR Object” on page 5-38

More About

. “PortfolioCVaR Object” on page 5-18

. “Portfolio Optimization Theory” on page 5-2

. “PortfolioCVaR Object Workflow” on page 5-16

External Websites
. CVaR Portfolio Optimization (5 min 33 sec)

. Analyzing Investment Strategies with CVaR Portfolio Optimization in MATLAB (50
min 42 sec)
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In this section...

“How Stochastic Optimization Works” on page 5-38

“What Are Scenarios?” on page 5-39

“Setting Scenarios Using the PortfolioCVaR Function” on page 5-39
“Setting Scenarios Using the setScenarios Function” on page 5-41
“Estimating the Mean and Covariance of Scenarios” on page 5-41
“Simulating Normal Scenarios” on page 5-42

“Simulating Normal Scenarios from Returns or Prices” on page 5-42
“Simulating Normal Scenarios with Missing Data” on page 5-44
“Simulating Normal Scenarios from Time Series Data” on page 5-45
“Simulating Normal Scenarios with Mean and Covariance” on page 5-47
“Working with a Riskless Asset” on page 5-48

“Working with Transaction Costs” on page 5-48

How Stochastic Optimization Works

The CVaR of a portfolio is a conditional expectation. (For the definition of the CVaR
function, see “Risk Proxy” on page 5-5.) Therefore, the CVaR portfolio optimization
problem is a stochastic optimization problem. Given a sample of scenarios, the
conditional expectation that defines the sample CVaR of the portfolio can be expressed
as a finite sum, a weighted average of losses. The weights of the losses depend on their
relative magnitude; for a confidence level a, only the worst (1 — a) x 100% losses get a
positive weight. As a function of the portfolio weights, the CVaR of the portfolio is a
convex function (see [48], [49] Rockafellar & Uryasev at “Portfolio Optimization” on page
A-10). It is also a nonsmooth function, but its edges are less sharp as the sample size
increases.

There are reformulations of the CVaR portfolio optimization problem (see [48], [49] at
Rockafellar & Uryasev) that result in a linear programming problem, which can be solved
either with standard linear programming techniques or with stochastic programming
solvers. The PortfolioCVaR object, however, does not reformulate the problem in such
a manner. The PortfolioCVaR object computes the CVaR as a nonlinear function. The
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convexity of the CVaR, as a function of the portfolio weights and the dull edges when the
number of scenarios is large, make the CVaR portfolio optimization problem tractable, in
practice, for certain nonlinear programming solvers, such as fmincon from Optimization
Toolbox. The problem can also be solved using a cutting-plane method (see Kelley [45] at
“Portfolio Optimization” on page A-10). For more information, see Algorithms section

of setSolver. To learn more about the workflow when using PortfolioCVaR objects, see

“PortfolioCVaR Object Workflow” on page 5-16.

What Are Scenarios?

Since conditional value-at-risk portfolio optimization works with scenarios of asset
returns to perform the optimization, several ways exist to specify and simulate scenarios.
In many applications with CVaR portfolio optimization, asset returns may have
distinctly nonnormal probability distributions with either multiple modes, binning of
returns, truncation of distributions, and so forth. In other applications, asset returns

are modeled as the result of various simulation methods that might include Monte-

Carlo simulation, quasi-random simulation, and so forth. In many cases, the underlying
probability distribution for risk factors may be multivariate normal but the resultant
transformations are sufficiently nonlinear to result in distinctively nonnormal asset
returns.

For example, this occurs with bonds and derivatives. In the case of bonds with a nonzero
probability of default, such scenarios would likely include asset returns that are —100%
to indicate default and some values slightly greater than —100% to indicate recovery
rates.

Although the PortfolioCVaR object has functions to simulate multivariate normal
scenarios from either data or moments (simulateNormalScenariosByData and
simulateNormalScenariosByMoments), the usual approach is to specify scenarios
directly from your own simulation functions. These scenarios are entered directly as

a matrix with a sample for all assets across each row of the matrix and with samples
for an asset down each column of the matrix. The architecture of the CVaR portfolio
optimization tools references the scenarios through a function handle so scenarios that
have been set cannot be accessed directly as a property of the PortfolioCVaR object.

Setting Scenarios Using the PortfolioCVaR Function

Suppose that you have a matrix of scenarios in the AssetScenarios variable. The
scenarios are set through the Portfol ioCVaR function with:
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m= [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioCVaR("Scenarios”, AssetScenarios);

disp(p-NumAssets);
disp(p-NumScenarios);

4

20000

Notice that the PortfolioCVaR object determines and fixes the number of assets in
NumAssets and the number of scenarios in NumScenarios based on the scenario’s
matrix. You can change the number of scenarios by calling the Portfol ioCVaR
function with a different scenario matrix. However, once the NumAssets property
has been set in the object, you cannot enter a scenario matrix with a different
number of assets. The getScenarios function lets you recover scenarios from a
PortfolioCVaR object. You can also obtain the mean and covariance of your scenarios
using estimateScenar ioMoments.

Although not recommended for the casual user, an alternative way exists to recover
scenarios by working with the function handle that points to scenarios in the
PortfolioCVaR object. To access some or all of the scenarios from a PortfolioCVaR object,
the hidden property localScenarioHandle is a function handle that points to a
function to obtain scenarios that have already been set. To get scenarios directly from a
PortfolioCVaR object p, use

scenarios = p.localScenarioHandle([], [D:
and to obtain a subset of scenarios from rows startrow to endrow, use

scenarios = p.localScenarioHandle(startrow, endrow);
where 1 < startrow < endrow < numScenarios.
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Setting Scenarios Using the setScenarios Function

You can also set scenarios using setScenarios. For example, given the mean and
covariance of asset returns in the variables m and C, the asset moment properties can be
set:

m=[ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

PortfolioCVaR;
setScenarios(p, AssetScenarios);

p
p

disp(p-NumAssets);
disp(p-NumScenarios);

4

20000

Estimating the Mean and Covariance of Scenarios

The estimateScenar ioMoments function obtains estimates for the mean and
covariance of scenarios in a PortfolioCVaR object.

m= [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;

0 0.0119 0.0336 0.1225 ];

m = m/12;

C = C/12;

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
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p = setScenarios(p, AssetScenarios);
[mean, covar] = estimateScenarioMoments(p)

mean =
0.0043
0.0085
0.0098
0.0153

covar =
0.0005 0.0003 0.0002 0.0000
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0049 0.0029
0.0000 0.0010 0.0029 0.0102

Simulating Normal Scenarios

As a convenience, the two functions (simulateNormalScenariosByData and
simulateNormalScenariosByMoments) exist to simulate scenarios from data or
moments under an assumption that they are distributed as multivariate normal random
asset returns.

Simulating Normal Scenarios from Returns or Prices

Given either return or price data, use the function simulateNormalScenariosByData
to simulate multivariate normal scenarios. Either returns or prices are stored as
matrices with samples going down the rows and assets going across the columns.

In addition, returns or prices can be stored in a financial time series Fints object

(see “Simulating Normal Scenarios from Time Series Data” on page 5-45). To

illustrate using simulateNormalScenariosByData, generate random samples of

120 observations of asset returns for four assets from the mean and covariance of asset
returns in the variables m and C with portsim. The default behavior of portsim creates
simulated data with estimated mean and covariance identical to the input moments m
and C. In addition to a return series created by portsim in the variable X, a price series
is created in the variable Y:

m [ 0.0042; 0.0083; 0.01; 0.15 J;
C [ 0.005333 0.00034 0.00016 O;
0.00034 0.002408 0.0017 0.000992;
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0.00016 0.0017 0.0048 0.0028;
0 0.000992 0.0028 0.010208 ];

X
Y

portsim(m®, C, 120);
ret2tick(X);

Note: Portfolio optimization requires that you use total returns and not just price
returns. So, “returns” should be total returns and “prices” should be total return prices.

Given asset returns and prices in variables X and Y from above, this sequence of
examples demonstrates equivalent ways to simulate multivariate normal scenarios for
the PortfolioCVaR object. Assume a PortfolioCVaR object created in p that uses the asset
returns in X uses simulateNormalScenariosByData:

PortfolioCVaR;
simulateNormalScenariosByData(p, X, 20000);

p
p

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

0.0043
0.0083
0.0102
0.1507

passetcovar =

0.0053 0.0003 0.0002 0.0000

0.0003 0.0024 0.0017 0.0010

0.0002 0.0017 0.0049 0.0028

0.0000 0.0010 0.0028 0.0101
The moments that you obtain from this simulation will likely differ from the moments
listed here because the scenarios are random samples from the estimated multivariate
normal probability distribution of the input returns X.

The default behavior of simulateNormalScenariosByData is to work

with asset returns. If, instead, you have asset prices as in the variable Y,
simulateNormalScenariosByData accepts a name-value pair argument name
"DataFormat” with a corresponding value set to "prices” to indicate that the input
to the function is in the form of asset prices and not returns (the default value for the
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"DataFormat” argument is "returns”). This example simulates scenarios with the
asset price data in Y for the PortfolioCVaR object q:

PortfolioCVaR;
simulateNormalScenariosByData(p, Y, 20000, “dataformat®, "prices”);

p
p

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

0.0043
0.0084
0.0094
0.1490

passetcovar =

0.0054 0.0004 0.0001 -0.0000
0.0004 0.0024 0.0016 0.0009
0.0001 0.0016 0.0048 0.0028
-0.0000 0.0009 0.0028 0.0100

Simulating Normal Scenarios with Missing Data

Often when working with multiple assets, you have missing data indicated

by NaN values in your return or price data. Although “Multivariate Normal
Regression” on page 9-2 goes into detail about regression with missing data, the
simulateNormalScenariosByData function has a name-value pair argument name
"MissingData” that indicates with a Boolean value whether to use the missing data
capabilities of Financial Toolbox. The default value for "MissingData“ is false
which removes all samples with NaN values. If, however, "MissingData“ is set to
true, simulateNormalScenariosByData uses the ECM algorithm to estimate asset
moments. This example shows how this works on price data with missing values:

[ 0.0042; 0.0083; 0.01; 0.15 ];
[ 0.005333 0.00034 0.00016 O;
0.00034 0.002408 0.0017 0.000992;
0.00016 0.0017 0.0048 0.0028;

0 0.000992 0.0028 0.010208 ];

portsim(m®, C, 120);
ret2tick(X);
Y(1:20,1) = NaNj;
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Y(1:12,4) = NaN;

Notice that the prices above in Y have missing values in the first and fourth series.

p = PortfolioCVaR;

p = simulateNormalScenariosByData(p, Y, 20000, “dataformat®, “prices”);

q = PortfolioCVaR;

q = simulateNormalScenariosByData(q, Y, 20000, “dataformat®, “prices”, "missingdata®, true);

[passetmean, passetcovar]
[gassetmean, gassetcovar]

estimateScenarioMoments(p)
estimateScenarioMoments(q)

passetmean =

0.0020
0.0074
0.0078
0.1476

passetcovar =

0.0055
0.0003
-0.0001
-0.0003

.0003 -
.0024
.0019
.0012

.0001 -
.0019
-0050
.0028

.0003
.0012
.0028
.0101

[eNeoNeoNe]
[eNeoNoNe]
[cNeoNeoNe]

gqassetmean =

0.0024
0.0085
0.0106
0.1482

qassetcovar =

0.0071 0.0004 -0.0001 -0.0004
0.0004 0.0032 0.0022 0.0012
-0.0001 0.0022 0.0063 0.0034
-0.0004 .0012 0.0034 0.0127

The first PortfolioCVaR object, p, contains scenarios obtained from price data in Y where
NaN values are discarded and the second PortfolioCVaR object, g, contains scenarios
obtained from price data in Y that accommodate missing values. Each time you run this
example, you get different estimates for the moments in p and q.

o

Simulating Normal Scenarios from Time Series Data

The simulateNormal ScenariosByData function also accepts asset returns or prices
stored in financial time series (Fints) objects. The function implicitly works with
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matrices of data or data in a Fints object using the same rules for whether the data are
returns or prices. To illustrate, use Fints to create the Fints object XFts that contains
asset returns generated with Fints (see “Estimating Asset Moments from Prices or
Returns” on page 4-45) and add series labels:

[ 0.0042; 0.0083; 0.01; 0.15 1;

m

C = [ 0.005333 0.00034 0.00016 O;
0.00034 0.002408 0.0017 0.000992;
0
0

-00016 0.0017 0.0048 0.0028;
0.000992 0.0028 0.010208 ];

=

= portsim(m*, C, 120);

d = (datenum("31-jan-20017):datenum("31-dec-2010"))";

Xfts = fints(d, zeros(numel(d),4), {"Bonds", "LargeCap®, "SmallCap®, "Emerging“});
Xfts = tomonthly(Xfts);

Xfts.Bonds = X(:,1);

Xfts._LargeCap = X(:,2);
Xfts._SmallCap = X(:,3);
Xfts.Emerging = X(:,4)

PortfolioCVaR;
simulateNormalScenariosByData(p, Xfts, 20000);

p
p

[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

0.0044
0.0082
0.0102
0.1504

passetcovar =

0.0054 0.0004 0.0002 -0.0000
0.0004 0.0024 0.0017 0.0010
0.0002 0.0017 0.0047 0.0027
-0.0000 0.0010 0.0027 0.0102

The name-value inputs "DataFormat® to handle return or price data
and"MissingData” to ignore or use samples with missing values also work for Fints
data. In addition, simulateNormalScenariosByData extracts asset names or
identifiers from a Fints object if the argument name "GetAssetList” is set to true
(the default value is False). If the "GetAssetList" value is true, the identifiers

are used to set the AssetList property of the PortfolioCVaR object. Thus, repeating
the formation of the PortfolioCVaR object q from the previous example with the
"GetAssetList" flag set to true extracts the series labels from the Fints object:
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p = simulateNormalScenariosByData(p, Xfts, 20000, "getassetlist”, true);
disp(p-AssetList)

"Bonds® "LargeCap® "SmallCap® “Emerging-

If you set the"GetAssetList” flag set to true and your input data is in a matrix,
simulateNormalScenariosByData uses the default labeling scheme from
setAssetList as described in “Setting Up a List of Asset Identifiers” on page 5-32.

Simulating Normal Scenarios with Mean and Covariance

Given the mean and covariance of asset returns, use the
simulateNormalScenariosByMoments function to simulate multivariate normal
scenarios. The mean can be either a row or column vector and the covariance matrix
must be a symmetric positive-semidefinite matrix. Various rules for scalar expansion
apply. To illustrate using simulateNormalScenariosByMoments, start with moments
in m and C and generate 20,000 scenarios:

[ 0.0042; 0.0083; 0.01; 0.15 ];
[ 0.005333 0.00034 0.00016 O;
.00034 0.002408 0.0017 0.000992;
.00016 0.0017 0.0048 0.0028;
0.000992 0.0028 0.010208 ]:

[eNeoNoN@R=]

p = PortfolioCVaR;
p = simulateNormalScenariosByMoments(p, m, C, 20000);
[passetmean, passetcovar] = estimateScenarioMoments(p)

passetmean =

0.0049
0.0083
0.0101
0.1503

passetcovar =
0.0053 0.0003 0.0002 -0.0000
0.0003 0.0024 0.0017 0.0010

0.0002 0.0017 0.0047 0.0028
-0.0000 0.0010 0.0028 0.0101

5-47



5 CVaR Portfolio Optimization Tools

simulateNormalScenariosByMoments performs scalar expansion on

arguments for the moments of asset returns. If NumAssets has not already

been set, a scalar argument is interpreted as a scalar with NumAssets set to 1.
simul